Dual Energy Computed Tomography in Head and Neck Imaging

Pushing the Envelope
  • Thiparom Sananmuang
    Affiliations
    Augmented Intelligence & Precision Health Laboratory, Department of Radiology, Research Institute of the McGill University Health Centre, 1001 Decarie Boulevard, Montreal, Quebec H4A 3J1, Canada

    Department of Diagnostic and Therapeutic Radiology and Research, Faculty of Medicine, Ramathibodi Hospital, 270 Thanon Rama VI, Thung Phaya Thai, Ratchathewi, Bangkok 10400, Thailand
    Search for articles by this author
  • Mohit Agarwal
    Affiliations
    Department of Radiology, Section of Neuroradiology, Froedtert and Medical College of Wisconsin, Milwaukee, 9200 W Wisconsin Avenue, WI 53226, USA
    Search for articles by this author
  • Farhad Maleki
    Affiliations
    Augmented Intelligence & Precision Health Laboratory, Department of Radiology, Research Institute of the McGill University Health Centre, 1001 Decarie Boulevard, Montreal, Quebec H4A 3J1, Canada
    Search for articles by this author
  • Nikesh Muthukrishnan
    Affiliations
    Augmented Intelligence & Precision Health Laboratory, Department of Radiology, Research Institute of the McGill University Health Centre, 1001 Decarie Boulevard, Montreal, Quebec H4A 3J1, Canada
    Search for articles by this author
  • Juan Camilo Marquez
    Affiliations
    Augmented Intelligence & Precision Health Laboratory, Department of Radiology, Research Institute of the McGill University Health Centre, 1001 Decarie Boulevard, Montreal, Quebec H4A 3J1, Canada

    Department of Radiology, McGill University, 1650 Cedar Avenue, Montreal, Quebec H3G 1A4, Canada
    Search for articles by this author
  • Jeffrey Chankowsky
    Affiliations
    Department of Radiology, McGill University, 1650 Cedar Avenue, Montreal, Quebec H3G 1A4, Canada
    Search for articles by this author
  • Reza Forghani
    Correspondence
    Corresponding author. Department of Radiology, McGill University, 1001 Decarie Boulevard, Montreal, Quebec H3A 3J1, Canada.
    Affiliations
    Augmented Intelligence & Precision Health Laboratory, Department of Radiology, Research Institute of the McGill University Health Centre, 1001 Decarie Boulevard, Montreal, Quebec H4A 3J1, Canada

    Department of Radiology, McGill University, 1650 Cedar Avenue, Montreal, Quebec H3G 1A4, Canada

    Segal Cancer Centre, Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 Cote Suite-Catherine Road, Montreal, Quebec H3T 1E2, Canada

    Gerald Bronfman Department of Oncology, McGill University, Suite 720, 5100 Maisonneuve Boulevard West, Montreal, Quebec H4A3T2, Canada

    Department of Otolaryngology, Head and Neck Surgery, Royal Victoria Hospital, McGill University Health Centre, 1001 boul. Decarie Boulevard, Montreal, Quebec H3A 3J1, Canada
    Search for articles by this author

      Keywords

      To read this article in full you will need to make a payment
      Purchase one-time access
      Subscribers receive full online access to your subscription and archive of back issues up to and including 2002.
      Content published before 2002 is available via pay-per-view purchase only.
      Subscribe to Neuroimaging Clinics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Flohr T.G.
        • McCollough C.H.
        • Bruder H.
        • et al.
        First performance evaluation of a dual-source CT (DSCT) system.
        Eur Radiol. 2006; 16: 256-268
        • Johnson T.R.
        • Krauss B.
        • Sedlmair M.
        • et al.
        Material differentiation by dual energy CT: initial experience.
        Eur Radiol. 2007; 17: 1510-1517
        • Johnson T.R.C.
        • Kalender W.A.
        Physical background.
        in: Johnson T. Fink C. Schönberg S.O. Dual energy CT in clinical practice. Springer-Verlag Berlin Heidelberg, Berlin2011: 3-9
        • Forghani R.
        • De Man B.
        • Gupta R.
        Dual-energy computed tomography: physical principles, approaches to scanning, usage, and implementation: part 1.
        Neuroimaging Clin N Am. 2017; 27: 371-384
        • Forghani R.
        • De Man B.
        • Gupta R.
        Dual-energy computed tomography: physical principles, approaches to scanning, usage, and implementation: part 2.
        Neuroimaging Clin N Am. 2017; 27: 385-400
        • McCollough C.H.
        • Leng S.
        • Yu L.
        • et al.
        Dual- and multi-energy CT: principles, technical approaches, and clinical applications.
        Radiology. 2015; 276: 637-653
        • Forghani R.
        • Srinivasan A.
        • Forghani B.
        Advanced tissue characterization and texture analysis using dual-energy computed tomography: horizons and emerging applications.
        Neuroimaging Clin N Am. 2017; 27: 533-546
        • Forghani R.
        • Levental M.
        • Gupta R.
        • et al.
        Different spectral hounsfield unit curve and high-energy virtual monochromatic image characteristics of squamous cell carcinoma compared with nonossified thyroid cartilage.
        AJNR Am J Neuroradiol. 2015; 36: 1194-1200
        • Lam S.
        • Gupta R.
        • Levental M.
        • et al.
        Optimal virtual monochromatic images for evaluation of normal tissues and head and neck cancer using dual-energy CT.
        AJNR Am J Neuroradiol. 2015; 36: 1518-1524
        • Srinivasan A.
        • Parker R.A.
        • Manjunathan A.
        • et al.
        Differentiation of benign and malignant neck pathologies: preliminary experience using spectral computed tomography.
        J Comput Assist Tomogr. 2013; 37: 666-672
        • Forghani R.
        • Kelly H.
        • Yu E.
        • et al.
        Low-energy virtual monochromatic dual-energy computed tomography images for the evaluation of head and neck squamous cell carcinoma: a study of tumor visibility compared with single-energy computed tomography and user acceptance.
        J Comput Assist Tomogr. 2017; 41: 565-571
        • Matsumoto K.
        • Jinzaki M.
        • Tanami Y.
        • et al.
        Virtual monochromatic spectral imaging with fast kilovoltage switching: improved image quality as compared with that obtained with conventional 120-kVp CT.
        Radiology. 2011; 259: 257-262
        • Patel B.N.
        • Thomas J.V.
        • Lockhart M.E.
        • et al.
        Single-source dual-energy spectral multidetector CT of pancreatic adenocarcinoma: optimization of energy level viewing significantly increases lesion contrast.
        Clin Radiol. 2013; 68: 148-154
        • Pinho D.F.
        • Kulkarni N.M.
        • Krishnaraj A.
        • et al.
        Initial experience with single-source dual-energy CT abdominal angiography and comparison with single-energy CT angiography: image quality, enhancement, diagnosis and radiation dose.
        Eur Radiol. 2013; 23: 351-359
        • Albrecht M.H.
        • Scholtz J.E.
        • Kraft J.
        • et al.
        Assessment of an advanced monoenergetic reconstruction technique in dual-energy computed tomography of head and neck cancer.
        Eur Radiol. 2015; 25: 2493-2501
        • Forghani R.
        • Kelly H.R.
        • Curtin H.D.
        Applications of dual-energy computed tomography for the evaluation of head and neck squamous cell carcinoma.
        Neuroimaging Clin N Am. 2017; 27: 445-459
        • Graser A.
        • Johnson T.R.
        • Hecht E.M.
        • et al.
        Dual-energy CT in patients suspected of having renal masses: can virtual nonenhanced images replace true nonenhanced images?.
        Radiology. 2009; 252: 433-440
        • Tawfik A.M.
        • Kerl J.M.
        • Bauer R.W.
        • et al.
        Dual-energy CT of head and neck cancer: average weighting of low- and high-voltage acquisitions to improve lesion delineation and image quality-initial clinical experience.
        Invest Radiol. 2012; 47: 306-311
        • Tawfik A.M.
        • Kerl J.M.
        • Razek A.A.
        • et al.
        Image quality and radiation dose of dual-energy CT of the head and neck compared with a standard 120-kVp acquisition.
        AJNR Am J Neuroradiol. 2011; 32: 1994-1999
        • Wichmann J.L.
        • Noske E.M.
        • Kraft J.
        • et al.
        Virtual monoenergetic dual-energy computed tomography: optimization of kiloelectron volt settings in head and neck cancer.
        Invest Radiol. 2014; 49: 735-741
        • Scholtz J.E.
        • Husers K.
        • Kaup M.
        • et al.
        Non-linear image blending improves visualization of head and neck primary squamous cell carcinoma compared to linear blending in dual-energy CT.
        Clin Radiol. 2015; 70: 168-175
        • Kraft M.
        • Ibrahim M.
        • Spector M.
        • et al.
        Comparison of virtual monochromatic series, iodine overlay maps, and single energy CT equivalent images in head and neck cancer conspicuity.
        Clin Imaging. 2018; 48: 26-31
        • May M.S.
        • Bruegel J.
        • Brand M.
        • et al.
        Computed tomography of the head and neck region for tumor staging-comparison of dual-source, dual-energy and low-kilovolt, single-energy acquisitions.
        Invest Radiol. 2017; 52: 522-528
        • Perez-Lara A.
        • Levental M.
        • Rosenbloom L.
        • et al.
        Routine dual-energy computed tomography scanning of the neck in clinical practice: a single-institution experience.
        Neuroimaging Clin N Am. 2017; 27: 523-531
        • Perez-Lara A.
        • Forghani R.
        Dual-energy computed tomography of the neck: a pictorial review of normal anatomy, variants, and pathologic entities using different energy reconstructions and material decomposition maps.
        Neuroimaging Clin N Am. 2017; 27: 499-522
        • Forastiere A.A.
        • Ismaila N.
        • Lewin J.S.
        • et al.
        Use of larynx-preservation strategies in the treatment of laryngeal cancer: American Society of Clinical Oncology Clinical Practice Guideline Update.
        J Clin Oncol. 2018; 36: 1143-1169
        • Becker M.
        • Zbaren P.
        • Delavelle J.
        • et al.
        Neoplastic invasion of the laryngeal cartilage: reassessment of criteria for diagnosis at CT.
        Radiology. 1997; 203: 521-532
        • Dadfar N.
        • Seyyedi M.
        • Forghani R.
        • et al.
        Computed tomography appearance of normal nonossified thyroid cartilage: implication for tumor invasion diagnosis.
        J Comput Assist Tomogr. 2015; 39: 240-243
        • Hermans R.
        Staging of laryngeal and hypopharyngeal cancer: value of imaging studies.
        Eur Radiol. 2006; 16: 2386-2400
        • Kuno H.
        • Onaya H.
        • Iwata R.
        • et al.
        Evaluation of cartilage invasion by laryngeal and hypopharyngeal squamous cell carcinoma with dual-energy CT.
        Radiology. 2012; 265: 488-496
        • Kuno H.
        • Sakamaki K.
        • Fujii S.
        • et al.
        Comparison of MR imaging and dual-energy CT for the evaluation of cartilage invasion by laryngeal and hypopharyngeal squamous cell carcinoma.
        AJNR Am J Neuroradiol. 2018; 39: 524-531
        • Yamauchi H.
        • Buehler M.
        • Goodsitt M.M.
        • et al.
        Dual-energy CT-based differentiation of benign posttreatment changes from primary or recurrent malignancy of the head and neck: comparison of spectral hounsfield units at 40 and 70 keV and iodine concentration.
        AJR Am J Roentgenol. 2016; 206: 580-587
        • Tawfik A.M.
        • Razek A.A.
        • Kerl J.M.
        • et al.
        Comparison of dual-energy CT-derived iodine content and iodine overlay of normal, inflammatory and metastatic squamous cell carcinoma cervical lymph nodes.
        Eur Radiol. 2014; 24: 574-580
        • Liu X.
        • Ouyang D.
        • Li H.
        • et al.
        Papillary thyroid cancer: dual-energy spectral CT quantitative parameters for preoperative diagnosis of metastasis to the cervical lymph nodes.
        Radiology. 2015; 275: 167-176
        • Yang L.
        • Luo D.
        • Li L.
        • et al.
        Differentiation of malignant cervical lymphadenopathy by dual-energy CT: a preliminary analysis.
        Sci Rep. 2016; 6: 31020
        • Zhao Y.
        • Li X.
        • Li L.
        • et al.
        Preliminary study on the diagnostic value of single-source dual-energy CT in diagnosing cervical lymph node metastasis of thyroid carcinoma.
        J Thorac Dis. 2017; 9: 4758-4766
        • Gao S.Y.
        • Zhang X.Y.
        • Wei W.
        • et al.
        Identification of benign and malignant thyroid nodules by in vivo iodine concentration measurement using single-source dual energy CT: A retrospective diagnostic accuracy study.
        Medicine (Baltimore). 2016; 95: e4816
        • Lee D.H.
        • Lee Y.H.
        • Seo H.S.
        • et al.
        Dual-energy CT iodine quantification for characterizing focal thyroid lesions.
        Head Neck. 2019; 41: 1024-1031
        • Li H.W.
        • Wu X.W.
        • Liu B.
        • et al.
        Clinical values of of gemstone spectral CT in diagnosing thyroid disease.
        J Xray Sci Technol. 2015; 23: 45-56
        • Li M.
        • Zheng X.
        • Li J.
        • et al.
        Dual-energy computed tomography imaging of thyroid nodule specimens: comparison with pathologic findings.
        Invest Radiol. 2012; 47: 58-64
        • Forghani R.
        • Roskies M.
        • Liu X.
        • et al.
        Dual-energy CT characteristics of parathyroid adenomas on 25-and 55-second 4D-CT acquisitions: preliminary experience.
        J Comput Assist Tomogr. 2016; 40: 806-814
        • Roskies M.
        • Liu X.
        • Hier M.P.
        • et al.
        3-phase dual-energy CT scan as a feasible salvage imaging modality for the identification of non-localizing parathyroid adenomas: a prospective study.
        J Otolaryngol Head Neck Surg. 2015; 44: 44
        • Beland B.
        • Levental M.
        • Srinivasan A.
        • et al.
        Practice variations in salivary gland imaging and utility of virtual unenhanced dual energy CT images for the detection of major salivary gland stones.
        Acta Radiol. 2018; (284185118817906)https://doi.org/10.1177/0284185118817906
        • Cha J.
        • Kim H.J.
        • Kim S.T.
        • et al.
        Dual-energy CT with virtual monochromatic images and metal artifact reduction software for reducing metallic dental artifacts.
        Acta Radiol. 2017; 58: 1312-1319
        • De Crop A.
        • Casselman J.
        • Van Hoof T.
        • et al.
        Analysis of metal artifact reduction tools for dental hardware in CT scans of the oral cavity: kVp, iterative reconstruction, dual-energy CT, metal artifact reduction software: does it make a difference?.
        Neuroradiology. 2015; 57: 841-849
        • Grosse Hokamp N.
        • Laukamp K.R.
        • Lennartz S.
        • et al.
        Artifact reduction from dental implants using virtual monoenergetic reconstructions from novel spectral detector CT.
        Eur J Radiol. 2018; 104: 136-142
        • Schwahofer A.
        • Bar E.
        • Kuchenbecker S.
        • et al.
        The application of metal artifact reduction (MAR) in CT scans for radiation oncology by monoenergetic extrapolation with a DECT scanner.
        Z Med Phys. 2015; 25: 314-325
        • Tanaka R.
        • Hayashi T.
        • Ike M.
        • et al.
        Reduction of dark-band-like metal artifacts caused by dental implant bodies using hypothetical monoenergetic imaging after dual-energy computed tomography.
        Oral Surg Oral Med Oral Pathol Oral Radiol. 2013; 115: 833-838
        • Nair J.R.
        • DeBlois F.
        • Ong T.
        • et al.
        Dual-Energy CT: balance between iodine attenuation and artifact reduction for the evaluation of head and neck cancer.
        J Comput Assist Tomogr. 2017; https://doi.org/10.1097/RCT.0000000000000617
        • Forghani R.
        An update on advanced dual-energy CT for head and neck cancer imaging.
        Expert Rev Anticancer Ther. 2019; 19: 633-644
        • Almeida I.P.
        • Schyns L.
        • Vaniqui A.
        • et al.
        Monte Carlo proton dose calculations using a radiotherapy specific dual-energy CT scanner for tissue segmentation and range assessment.
        Phys Med Biol. 2018; 63: 115008
        • Bazalova M.
        • Carrier J.F.
        • Beaulieu L.
        • et al.
        Dual-energy CT-based material extraction for tissue segmentation in Monte Carlo dose calculations.
        Phys Med Biol. 2008; 53: 2439-2456
        • Hunemohr N.
        • Krauss B.
        • Dinkel J.
        • et al.
        Ion range estimation by using dual energy computed tomography.
        Z Med Phys. 2013; 23: 300-313
        • van Elmpt W.
        • Landry G.
        • Das M.
        • et al.
        Dual energy CT in radiotherapy: current applications and future outlook.
        Radiother Oncol. 2016; 119: 137-144
        • Wohlfahrt P.
        • Mohler C.
        • Stutzer K.
        • et al.
        Dual-energy CT based proton range prediction in head and pelvic tumor patients.
        Radiother Oncol. 2017; 125: 526-533
        • Wang T.
        • Ghavidel B.B.
        • Beitler J.J.
        • et al.
        Optimal virtual monoenergetic image in "TwinBeam" dual-energy CT for organs-at-risk delineation based on contrast-noise-ratio in head-and-neck radiotherapy.
        J Appl Clin Med Phys. 2019; 20: 121-128
        • Bahig H.
        • Lapointe A.
        • Bedwani S.
        • et al.
        Dual-energy computed tomography for prediction of loco-regional recurrence after radiotherapy in larynx and hypopharynx squamous cell carcinoma.
        Eur J Radiol. 2019; 110: 1-6
        • Gillies R.J.
        • Kinahan P.E.
        • Hricak H.
        Radiomics: images are more than pictures, they are data.
        Radiology. 2016; 278: 563-577
        • Kumar V.
        • Gu Y.
        • Basu S.
        • et al.
        Radiomics: the process and the challenges.
        Magn Reson Imaging. 2012; 30: 1234-1248
        • Lambin P.
        • Rios-Velazquez E.
        • Leijenaar R.
        • et al.
        Radiomics: extracting more information from medical images using advanced feature analysis.
        Eur J Cancer. 2012; 48: 441-446
        • Aerts H.J.
        • Velazquez E.R.
        • Leijenaar R.T.
        • et al.
        Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach.
        Nat Commun. 2014; 5: 4006
        • Forghani R.
        • Savadjiev P.
        • Chatterjee A.
        • et al.
        Radiomics and artificial intelligence for biomarker and prediction model development in oncology.
        Comput Struct Biotechnol J. 2019; 17: 995-1008
        • Ganeshan B.
        • Panayiotou E.
        • Burnand K.
        • et al.
        Tumour heterogeneity in non-small cell lung carcinoma assessed by CT texture analysis: a potential marker of survival.
        Eur Radiol. 2012; 22: 796-802
        • Lambin P.
        • Leijenaar R.T.H.
        • Deist T.M.
        • et al.
        Radiomics: the bridge between medical imaging and personalized medicine.
        Nat Rev Clin Oncol. 2017; 14: 749-762
        • Lubner M.G.
        • Smith A.D.
        • Sandrasegaran K.
        • et al.
        CT texture analysis: definitions, applications, biologic correlates, and challenges.
        Radiographics. 2017; 37: 1483-1503
        • Parmar C.
        • Leijenaar R.T.
        • Grossmann P.
        • et al.
        Radiomic feature clusters and prognostic signatures specific for Lung and Head & Neck cancer.
        Sci Rep. 2015; 5: 11044
        • Al Ajmi E.
        • Forghani B.
        • Reinhold C.
        • et al.
        Spectral multi-energy CT texture analysis with machine learning for tissue classification: an investigation using classification of benign parotid tumours as a testing paradigm.
        Eur Radiol. 2018; 28: 2604-2611
        • Foncubierta-Rodriguez A.
        • Jimenez del Toro O.A.
        • Platon A.
        • et al.
        Benefits of texture analysis of dual energy CT for Computer-Aided pulmonary embolism detection.
        Conf Proc IEEE Eng Med Biol Soc. 2013; 2013: 3973-3976
        • Forghani R.
        • Chatterjee A.
        • Reinhold C.
        • et al.
        Head and neck squamous cell carcinoma: prediction of cervical lymph node metastasis by dual-energy CT texture analysis with machine learning.
        Eur Radiol. 2019; 29: 6172-6181
        • Oldan J.
        • He M.
        • Wu T.
        • et al.
        Pilot study: evaluation of dual-energy computed tomography measurement strategies for positron emission tomography correlation in pancreatic adenocarcinoma.
        J Digit Imaging. 2014; 27: 824-832
        • Seidler M.
        • Forghani B.
        • Reinhold C.
        • et al.
        Dual-Energy CT texture analysis with machine learning for the evaluation and characterization of cervical lymphadenopathy.
        Comput Struct Biotechnol J. 2019; 17: 1009-1015