Artificial Intelligence in Head and Neck Imaging

A Glimpse into the Future

      Keywords

      To read this article in full you will need to make a payment
      Purchase one-time access
      Subscribers receive full online access to your subscription and archive of back issues up to and including 2002.
      Content published before 2002 is available via pay-per-view purchase only.
      Subscribe to Neuroimaging Clinics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Thrall J.
        • Li X.
        • Li Q.
        • et al.
        Artificial intelligence and machine learning in radiology: opportunities, challenges, pitfalls, and criteria for success.
        J Am Coll Radiol. 2016; 15: 504-508
        • Noguerol T.
        • Paulano-Godino F.
        • Martín-Valdivia M.
        • et al.
        Strengths, weaknesses, opportunities, and threats analysis of artificial intelligence and machine learning applications in radiology.
        J Am Coll Radiol. 2019; 16: 1239-1247
        • Kohli M.
        • Prevedello L.
        • Filice R.
        • et al.
        Implementing machine learning in radiology practice and research.
        Am J Roentgenol. 2017; 208: 754-760
        • Erickson B.
        • Korfiatis P.
        • Akkus Z.
        • et al.
        Machine learning for medical imaging.
        Radiographics. 2017; 37: 505-515
        • Chartrand G.
        • Cheng P.
        • Vorontsov E.
        • et al.
        Deep learning: a primer for radiologists.
        Radiographics. 2017; 37: 2113-2131
        • Obermeyer Z.
        • Emanuel E.
        Predicting the future — big data, machine learning, and clinical medicine.
        N Engl J Med. 2016; 375: 1216-1219
        • Susskind R.
        • Susskind D.
        Technology will replace many doctors, lawyers, and other professionals. In: Harvard business review.
        (Available at:) (Accessed January 27, 2020)
        • Morgenstern M.
        Automation and anxiety. In: economist.
        (Available at:) (Accessed January 27, 2020)
      1. Creative Destruction Lab. Geoff Hinton: On radiology. YouTube video.
        (Available at:) (Accessed January 26, 2020)
        • Hinton G.
        Deep learning—a technology with the potential to transform health care.
        JAMA. 2018; 320: 1101
        • Koktzoglou I.
        • Huang R.
        • Ong A.
        • et al.
        Feasibility of a sub-3-minute imaging strategy for ungated quiescent interval slice-selective MRA of the extracranial carotid arteries using radial k-space sampling and deep learning–based image processing.
        Magn Reson Med. 2020; 84: 825-837
        • Zhu G.
        • Jiang B.
        • Tong L.
        • et al.
        Applications of deep learning to neuro-imaging techniques.
        Front Neurol. 2019; 10: 869
        • Golkov V.
        • Dosovitskiy A.
        • Sperl J.
        • et al.
        q-Space deep learning: twelve-fold shorter and model-free diffusion MRI scans.
        IEEE Trans Med Imaging. 2016; 35: 1344-1351
        • Hyun C.
        • Kim H.
        • Lee S.
        • et al.
        Deep learning for undersampled MRI reconstruction.
        Phys Med Biol. 2018; 63: 135007
        • Lee D.
        • Yoo J.
        • Tak S.
        • et al.
        Deep residual learning for accelerated MRI using magnitude and phase networks.
        IEEE Trans Biomed Eng. 2018; 65: 1985-1995
        • Xie S.
        • Zheng X.
        • Chen Y.
        • et al.
        Artifact removal using improved GoogLeNet for sparse-view CT reconstruction.
        Sci Rep. 2018; 8: 6700
        • Chen H.
        • Zhang Y.
        • Kalra M.
        • et al.
        Low-dose CT with a residual encoder-decoder convolutional neural network.
        IEEE Trans Med Imaging. 2017; 36: 2524-2535
        • Gong E.
        • Pauly J.
        • Wintermark M.
        • et al.
        Deep learning enables reduced gadolinium dose for contrast-enhanced brain MRI.
        J Magn Reson Imaging. 2018; 48: 330-340
        • Duong M.
        • Rudie J.
        • Wang J.
        • et al.
        Convolutional neural network for automated FLAIR lesion segmentation on clinical brain MR imaging.
        Am J Neuroradiol. 2019; 40: 1282-1290
        • Lotan E.
        • Jain R.
        • Razavian N.
        • et al.
        State of the art: machine learning applications in glioma imaging.
        Am J Roentgenol. 2019; 212: 26-37
        • Fan G.
        • Liu H.
        • Wu Z.
        • et al.
        Deep learning–based automatic segmentation of lumbosacral nerves on CT for spinal intervention: a translational study.
        Am J Neuroradiol. 2019; 40: 1074-1081
        • Oakden-Rayner L.
        The rebirth of CAD: how is modern AI different from the CAD we know?.
        Radiol Artif Intell. 2019; 1: e180089
        • Kuo W.
        • Hӓne C.
        • Mukherjee P.
        • et al.
        Expert-level detection of acute intracranial hemorrhage on head computed tomography using deep learning.
        Proc Natl Acad Sci U S A. 2019; 116: 22737-22745
        • Sreekumari A.
        • Shanbhag D.
        • Yeo D.
        • et al.
        A deep learning–based approach to reduce rescan and recall rates in clinical MRI examinations.
        Am J Neuroradiol. 2019; 40: 217-223
        • Tamada D.
        • Kromrey M.
        • Ichikawa S.
        • et al.
        Motion artifact reduction using a convolutional neural network for dynamic contrast enhanced MR imaging of the liver.
        Magn Reson Med Sci. 2020; 19: 64-76
        • Haskell M.
        • Cauley S.
        • Bilgic B.
        • et al.
        Network Accelerated Motion Estimation and Reduction (NAMER): convolutional neural network guided retrospective motion correction using a separable motion model.
        Magn Reson Med. 2019; 82: 1452-1461
        • Cheng L.
        • Zheng J.
        • Savova G.
        • et al.
        Discerning tumor status from unstructured MRI reports—completeness of information in existing reports and utility of automated natural language processing.
        J Digit Imaging. 2009; 23: 119-132
        • Lou R.
        • Lalevic D.
        • Chambers C.
        • et al.
        Automated detection of radiology reports that require follow-up imaging using natural language processing feature engineering and machine learning classification.
        J Digit Imaging. 2019; 33: 131-136
        • Choy G.
        • Khalilzadeh O.
        • Michalski M.
        • et al.
        Current applications and future impact of machine learning in radiology.
        Radiology. 2018; 288: 318-328
        • Zhu W.
        • Huang Y.
        • Zeng L.
        • et al.
        AnatomyNet: deep learning for fast and fully automated whole-volume segmentation of head and neck anatomy.
        Med Phys. 2018; 46: 579-589
        • Kearney V.
        • Chan J.
        • Valdes G.
        • et al.
        The application of artificial intelligence in the IMRT planning process for head and neck cancer.
        Oral Oncol. 2018; 87: 111-116
        • Doshi T.
        • Wilson C.
        • Paterson C.
        • et al.
        Validation of a magnetic resonance imaging-based auto-contouring software tool for gross tumour delineation in head and neck cancer radiotherapy planning.
        Clin Oncol. 2017; 29: 60-67
        • Lin L.
        • Dou Q.
        • Jin Y.
        • et al.
        Deep learning for automated contouring of primary tumor volumes by MRI for nasopharyngeal carcinoma.
        Radiology. 2019; 291: 677-686
        • Kann B.
        • Aneja S.
        • Loganadane G.
        • et al.
        Pretreatment identification of head and neck cancer nodal metastasis and extranodal extension using deep learning neural networks.
        Sci Rep. 2018; 8: 14036
        • Giraud P.
        • Giraud P.
        • Gasnier A.
        • et al.
        Radiomics and machine learning for radiotherapy in head and neck cancers.
        Front Oncol. 2019; 9: 174
        • Du R.
        • Lee V.
        • Yuan H.
        • et al.
        Radiomics model to predict early progression of nonmetastatic nasopharyngeal carcinoma after intensity modulation radiation therapy: a multicenter study.
        Radiol Artif Intell. 2019; 1: e180075
        • M. D. Anderson Cancer Center Head and Neck Quantitative Imaging Working Group
        Investigation of radiomic signatures for local recurrence using primary tumor texture analysis in oropharyngeal head and neck cancer patients.
        Sci Rep. 2018; 8: 1524
        • Forghani R.
        • Chatterjee A.
        • Reinhold C.
        • et al.
        Head and neck squamous cell carcinoma: prediction of cervical lymph node metastasis by dual-energy CT texture analysis with machine learning.
        Eur Radiol. 2019; 29: 6172-6181
        • Chang Y.
        • Paul A.
        • Kim N.
        • et al.
        Computer-aided diagnosis for classifying benign versus malignant thyroid nodules based on ultrasound images: A comparison with radiologist-based assessments.
        Med Phys. 2019; 43: 554-567
        • Gu J.
        • Zhu J.
        • Qiu Q.
        • et al.
        Prediction of immunohistochemistry of suspected thyroid nodules by use of machine learning–based radiomics.
        Am J Roentgenol. 2019; 213: 1348-1357
        • Chowdhury N.
        • Smith T.
        • Chandra R.
        • et al.
        Automated classification of osteomeatal complex inflammation on computed tomography using convolutional neural networks.
        Int Forum Allergy Rhinol. 2019; 9: 46-52
        • Hoang J.
        • Middleton W.
        • Farjat A.
        • et al.
        Interobserver variability of sonographic features used in the american college of radiology thyroid imaging reporting and data system.
        Am J Roentgenol. 2018; 211: 162-167
        • Simonite T.
        The best algorithms struggle to recognize black faces equally. In: Wired.
        (Available at:) (Accessed February 4, 2020)
        • Prior F.
        • Brunsden B.
        • Hildebolt C.
        • et al.
        Facial recognition from volume-rendered magnetic resonance imaging data.
        IEEE Trans Inf Technol Biomed. 2009; 13: 5-9