Artificial Intelligence and Stroke Imaging

A West Coast Perspective
Published:September 18, 2020DOI:https://doi.org/10.1016/j.nic.2020.07.001

      Keywords

      To read this article in full you will need to make a payment
      Purchase one-time access
      Subscribers receive full online access to your subscription and archive of back issues up to and including 2002.
      Content published before 2002 is available via pay-per-view purchase only.
      Subscribe to Neuroimaging Clinics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Lundervold A.S.
        • Lundervold A.
        An overview of deep learning in medical imaging focusing on MRI.
        Z Med Phys. 2019; 29: 102-127
        • Suri J.S.
        State-of-the-art review on deep learning in medical imaging.
        Front Biosci. 2018; 24: 392-426
        • Maier A.
        • Syben C.
        • Lasser T.
        • et al.
        A gentle introduction to deep learning in medical image processing.
        Z Med Phys. 2019; 29: 86-101
        • Litjens G.
        • Kooi T.
        • Bejnordi B.E.
        • et al.
        A survey on deep learning in medical image analysis.
        Med Image Anal. 2017; 42: 60-88
        • Mayo R.C.
        • Leung J.
        Artificial intelligence and deep learning – Radiology’s next frontier?.
        Clin Imaging. 2018; 49: 87-88
        • Fazal M.I.
        • Patel M.E.
        • Tye J.
        • et al.
        The past, present and future role of artificial intelligence in imaging.
        Eur J Radiol. 2018; 105: 246-250
        • Hosny A.
        • Parmar C.
        • Quackenbush J.
        • et al.
        Artificial intelligence in radiology.
        Nat Rev Cancer. 2018; 18 (Available at:) (Accessed November 30, 2018): 500-510
        • Zhu G.
        • Jiang B.
        • Tong L.
        • et al.
        Applications of Deep Learning to Neuro-Imaging Techniques.
        Front Neurol. 2019; 10: 1-13
        • Patel U.K.
        • Anwar A.
        • Saleem S.
        • et al.
        Artificial intelligence as an emerging technology in the current care of neurological disorders.
        J Neurol. 2019; (Available at:)https://doi.org/10.1007/s00415-019-09518-3
        • Sakai K.
        • Yamada K.
        Machine learning studies on major brain diseases: 5-year trends of 2014–2018.
        Jpn J Radiol. 2019; 37: 34-72
        • Zaharchuk G.
        • Gong E.
        • Wintermark M.
        • et al.
        Deep learning in neuroradiology.
        AJNR Am J Neuroradiol. 2018; 39 (Available at:): 1776-1784
        • Davatzikos C.
        Machine learning in neuroimaging: Progress and challenges.
        Neuroimage. 2018; 197 (Available at:) (Accessed November 6, 2018): 652-656
        • Gupta M.K.
        Artificial intelligence in diagnosis and management of ischemic stroke.
        Biomed J Sci Tech Res. 2019; 13: 9964-9967
        • Liebeskind D.S.
        Artificial intelligence in stroke care: Deep learning or superficial insight?.
        EBioMedicine. 2018; 35: 14-15
        • Kamal H.
        • Lopez V.
        • Sheth S.A.
        Machine learning in acute ischemic stroke neuroimaging.
        Front Neurol. 2018; 9 (Available at:): 7-12
        • Lee E.-J.
        • Kim Y.-H.
        • Kim N.
        • et al.
        Deep into the brain: artificial intelligence in stroke imaging.
        J Stroke. 2017; 19 (Available at:) (Accessed November 6, 2018): 277-285
        • Feng R.
        • Badgeley M.
        • Mocco J.
        • et al.
        Deep learning guided stroke management: a review of clinical applications.
        J Neurointerv Surg. 2018; 10 (Available at:) (Accessed November 6, 2018): 358-362
      1. FDA approves stroke-detecting AI software.
        Nat Biotechnol. 2018; 36: 290
      2. US Food and Drug Administration. DEN170073 Viz.AI. 2018;90:1–22.
        (Available at:) (Accessed September 26, 2019)
        • Ulas C.
        • Das D.
        • Thrippleton M.J.
        • et al.
        Parameters: Application to stroke dynamic contrast-enhanced MRI.
        Front Neurol. 2019; 10: 1-14
        • Kim K.H.
        • Choi S.H.
        • Park S.-H.
        Improving arterial spin labeling by using deep learning.
        Radiology. 2018; 287 (Available at:): 658-666
        • Gibbons E.K.
        • Hodgson K.K.
        • Chaudhari A.S.
        • et al.
        Simultaneous NODDI and GFA parameter map generation from subsampled q-space imaging using deep learning.
        Magn Reson Med. 2019; 81: 2399-2411
        • Herweh C.
        • Ringleb P.A.
        • Rauch G.
        • et al.
        Performance of e-ASPECTS software in comparison to that of stroke physicians on assessing CT scans of acute ischemic stroke patients.
        Int J Stroke. 2016; 11: 438-445
        • Nagel S.
        • Sinha D.
        • Day D.
        • et al.
        e-ASPECTS software is non-inferior to neuroradiologists in applying the ASPECT score to computed tomography scans of acute ischemic stroke patients.
        Int J Stroke. 2017; 12 (Available at:) (Accessed Novemeber 6, 2018): 615-622
        • Gao X.W.
        • Hui R.
        • Tian Z.
        Classification of CT brain images based on deep learning networks.
        Comput Methods Programs Biomed. 2017; 138: 49-56
        • Prevedello L.M.
        • Erdal B.S.
        • Ryu J.L.
        • et al.
        Automated critical test findings identification and online notification system using artificial intelligence in imaging.
        Radiology. 2017; 285 (Available at:) (Accessed November 6, 2018): 923-931
        • Chilamkurthy S.
        • Ghosh R.
        • Tanamala S.
        • et al.
        Deep learning algorithms for detection of critical findings in head CT scans: a retrospective study.
        Lancet. 2018; 392 (Available at:) (Accessed November 5, 2018): 2388-2396
        • Titano J.J.
        • Badgeley M.
        • Schefflein J.
        • et al.
        Automated deep-neural-network surveillance of cranial images for acute neurologic events.
        Nat Med. 2018; 24: 1337-1341
        • Guberina N.
        • Dietrich U.
        • Radbruch A.
        • et al.
        Detection of early infarction signs with machine learning-based diagnosis by means of the Alberta Stroke Program Early CT score (ASPECTS) in the clinical routine.
        Neuroradiology. 2018; 60 (Available at:) (Accessed November 6, 2018): 889-901
        • Grunwald I.Q.
        • Kulikovski J.
        • Reith W.
        • et al.
        Collateral automation for triage in stroke: evaluating automated scoring of collaterals in acute stroke on computed tomography scans.
        Cerebrovasc Dis. 2019; 47: 217-222
        • Kuang H.
        • Najm M.
        • Chakraborty D.
        • et al.
        Automated aspects on noncontrast CT scans in patients with acute ischemic stroke using machine learning.
        Am J Neuroradiol. 2019; 40: 33-38
        • Cho J.
        • Park K.S.
        • Karki M.
        • et al.
        Improving sensitivity on identification and delineation of intracranial hemorrhage lesion using cascaded deep learning models.
        J Digit Imaging. 2019; 32: 450-461
        • Öman O.
        • Mäkelä T.
        • Salli E.
        • et al.
        3D convolutional neural networks applied to CT angiography in the detection of acute ischemic stroke.
        Eur Radiol Exp. 2019; 3: 8
        • Score E.C.T.
        • Albers G.W.
        • Wald M.J.
        • et al.
        Automated calculation of alberta stroke program early CT Score.
        Stroke. 2019; 50: 3277-3279
      3. Vincent N, Stier N, Yu S, et al. Detection of hyperperfusion on arterial spin labeling using deep learning. 2015 IEEE International Conference on Bioinformatics and Biomedicine (BIBM). Washington, DC, November 9-12, 2015.

        • Maier O.
        • Menze B.H.
        • von der Gablentz J.
        • et al.
        ISLES 2015 - A public evaluation benchmark for ischemic stroke lesion segmentation from multispectral MRI.
        Med Image Anal. 2017; 35: 250-269
        • Kamnitsas K.
        • Ledig C.
        • Newcombe V.F.J.
        • et al.
        Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation.
        Med Image Anal. 2017; 36 (Available at:) (Accessed November 5, 2018): 61-78
        • Praveen G.B.
        • Agrawal A.
        • Sundaram P.
        • et al.
        Ischemic stroke lesion segmentation using stacked sparse autoencoder.
        Comput Biol Med. 2018; 99: 38-52
        • Pereira S.
        • Meier R.
        • McKinley R.
        • et al.
        Enhancing interpretability of automatically extracted machine learning features: application to a RBM-Random Forest system on brain lesion segmentation.
        Med Image Anal. 2018; 44 (Available at:) (Accessed November 6, 2018): 228-244
        • Boldsen J.K.
        • Engedal T.S.
        • Pedraza S.
        • et al.
        Better diffusion segmentation in acute ischemic stroke through automatic tree learning anomaly segmentation.
        Front Neuroinform. 2018; 12 (Accessed November 5, 2018): 21
        • Ortiz-Ramón R.
        • Valdés Hernández M. del C.
        • González-Castro V.
        • et al.
        Identification of the presence of ischaemic stroke lesions by means of texture analysis on brain magnetic resonance images.
        Comput Med Imaging Graph. 2019; 74: 12-24
        • Ho K.C.
        • Speier W.
        • Zhang H.
        • et al.
        A machine learning approach for classifying ischemic stroke onset time from imaging.
        IEEE Trans Med Imaging. 2019; 38: 1666-1676
        • Kim C.
        • Zhu V.
        • Obeid J.
        • et al.
        Natural language processing and machine learning algorithm to identify brain MRI reports with acute ischemic stroke.
        PLoS One. 2019; 14: 1-13
        • Chung J.W.
        • Kim Y.C.
        • Cha J.
        • et al.
        Characterization of clot composition in acute cerebral infarct using machine learning techniques.
        Ann Clin Transl Neurol. 2019; 6: 739-747
        • Liu S.
        • Utriainen D.
        • Chai C.
        • et al.
        Cerebral microbleed detection using Susceptibility Weighted Imaging and deep learning.
        Neuroimage. 2019; 198: 271-282
        • Schirmer M.D.
        • Dalca A.V.
        • Sridharan R.
        • et al.
        White matter hyperintensity quantification in large-scale clinical acute ischemic stroke cohorts – The MRI-GENIE study.
        Neuroimage Clin. 2019; 23: 101884
        • Livne M.
        • Rieger J.
        • Aydin O.U.
        • et al.
        A U-net deep learning framework for high performance vessel segmentation in patients with cerebrovascular disease.
        Front Neurosci. 2019; 13: 1-13
        • Pszczolkowski S.
        • Law Z.K.
        • Gallagher R.G.
        • et al.
        Automated segmentation of haematoma and perihaematomal oedema in MRI of acute spontaneous intracerebral haemorrhage.
        Comput Biol Med. 2019; 106: 126-139
        • Wu O.
        • Winzeck S.
        • Giese A.K.
        • et al.
        Big data approaches to phenotyping acute ischemic stroke using automated lesion segmentation of multi-center magnetic resonance imaging data.
        Stroke. 2019; 50: 1734-1741
        • Kim Y.C.
        • Lee J.E.
        • Yu I.
        • et al.
        Evaluation of diffusion lesion volume measurements in acute ischemic stroke using encoder-decoder convolutional network.
        Stroke. 2019; 50: 1444-1451
        • Duong M.T.
        • Rudie J.D.
        • Wang J.
        • et al.
        Convolutional neural network for automated FLAIR lesion segmentation on clinical brain MR imaging.
        Am J Neuroradiol. 2019; 40: 1282-1290
        • Araki T.
        • Jain P.K.
        • Suri H.S.
        • et al.
        Stroke risk stratification and its validation using ultrasonic echolucent carotid wall plaque morphology: a machine learning paradigm.
        Comput Biol Med. 2017; 80: 77-96
        • Biswas M.
        • Kuppili V.
        • Araki T.
        • et al.
        Deep learning strategy for accurate carotid intima-media thickness measurement: An ultrasound study on Japanese diabetic cohort.
        Comput Biol Med. 2018; 98: 100-117
        • Biswas M.
        • Kuppili V.
        • Saba L.
        • et al.
        Deep learning fully convolution network for lumen characterization in diabetic patients using carotid ultrasound: a tool for stroke risk.
        Med Biol Eng Comput. 2019; 57: 543-564
        • Zhou R.
        • Fenster A.
        • Xia Y.
        • et al.
        Deep learning-based carotid media-adventitia and lumen-intima boundary segmentation from three-dimensional ultrasound images.
        Med Phys. 2019; 46: 3180-3193
        • Bentley P.
        • Ganesalingam J.
        • Carlton Jones A.L.
        • et al.
        Prediction of stroke thrombolysis outcome using CT brain machine learning.
        Neuroimage Clin. 2014; 4: 635-640
        • Lucas C.
        • Kemmling A.
        • Bouteldja N.
        • et al.
        Learning to predict ischemic stroke growth on acute CT perfusion data by interpolating low -dimensional shape representations.
        Front Neurol. 2018; 9: 1-15
        • Kasasbeh A.S.
        • Christensen S.
        • Parsons M.W.
        • et al.
        Artificial Neural Network Computer Tomography Perfusion Prediction of Ischemic Core.
        Stroke. 2019; 50: 1578-1581
        • Fiehler J.
        • Thomalla G.
        • Bernhardt M.
        • et al.
        Eraser.
        Stroke. 2019; 50: 1275-1278
        • Bacchi S.
        • Zerner T.
        • Oakden-Rayner L.
        • et al.
        Deep learning in the prediction of ischaemic stroke thrombolysis functional outcomes: a pilot study.
        Acad Radiol. 2019; 27: e19-e23
        • Giacalone M.
        • Rasti P.
        • Debs N.
        • et al.
        Local spatio-temporal encoding of raw perfusion MRI for the prediction of final lesion in stroke.
        Med Image Anal. 2018; 50 (Available at:) (Accessed November 6, 2018): 117-126
        • Livne M.
        • Boldsen J.K.
        • Mikkelsen I.K.
        • et al.
        Boosted tree model reforms multimodal magnetic resonance imaging infarct prediction in acute stroke.
        Stroke. 2018; 49 (Available at:) (Accessed November 6, 2018): 912-918
        • Ho K.C.
        Predicting ischemic stroke tissue fate using a deep convolutional neural network on source magnetic resonance perfusion images.
        J Med Imaging. 2019; 6: 1
        • Pinto A.
        • Mckinley R.
        • Alves V.
        • et al.
        Stroke lesion outcome prediction based on MRI imaging combined with clinical information.
        Front Neurol. 2018; 9: 1-10
        • Moulton E.
        • Valabregue R.
        • Lehéricy S.
        • et al.
        Multivariate prediction of functional outcome using lesion topography characterized by acute diffusion tensor imaging.
        Neuroimage Clin. 2019; 23: 101821
        • Chauhan S.
        • Vig L.
        • De Filippo De Grazia M.
        • et al.
        A comparison of shallow and deep learning methods for predicting cognitive performance of stroke patients from MRI lesion images.
        Front Neuroinform. 2019; 13: 1-12
        • Winzeck S.
        • Hakim A.
        • McKinley R.
        • et al.
        ISLES 2016 and 2017-benchmarking ischemic stroke lesion outcome prediction based on multispectral MRI.
        Front Neurol. 2018; 9 (Available at:): 679
        • Yang Q.
        • Yan P.
        • Zhang Y.
        • et al.
        Low-dose CT image denoising using a generative adversarial network with wasserstein distance and perceptual loss.
        IEEE Trans Med Imaging. 2018; 37: 1348-1357
        • Chen K.T.
        • Gong E.
        • Bezerra F.
        • et al.
        Ultra – low-dose 18 F-florbetaben amyloid PET imaging using deep learning with multi-contrast MRI inputs.
        Radiology. 2019; 290: 649-656
        • Kassner A.
        • Mandell D.M.
        • Mikulis D.J.
        Measuring permeability in acute ischemic stroke.
        Neuroimaging Clin N Am. 2011; 21 (x–xi. Available at:) (Accessed September 23, 2013): 315-325
        • Mokli Y.
        • Pfaff J.
        • dos Santos D.P.
        • et al.
        Computer-aided imaging analysis in acute ischemic stroke – background and clinical applications.
        Neurol Res Pract. 2019; 1 (Available at:): 23
        • Goldenberg R.
        • Peled N.
        Computer-aided simple triage.
        Int J Comput Assist Radiol Surg. 2011; 6: 705-711
        • Thomalla G.
        • Cheng B.
        • Ebinger M.
        • et al.
        DWI-FLAIR mismatch for the identification of patients with acute ischaemic stroke within 4·5 h of symptom onset (PRE-FLAIR): A multicentre observational study.
        Lancet Neurol. 2011; 10: 978-986
        • Emeriau S.
        • Serre I.
        • Toubas O.
        • et al.
        Can diffusion-weighted imaging-fluid-attenuated inversion recovery mismatch (positive diffusion-weighted imaging/negative fluid-attenuated inversion recovery) at 3 tesla identify patients with stroke at <4.5 hours?.
        Stroke. 2013; 44: 1647-1651
        • Takahashi N.
        • Lee Y.
        • Tsai D.Y.
        • et al.
        An automated detection method for the MCA dot sign of acute stroke in unenhanced CT.
        Radiol Phys Technol. 2014; 7: 79-88
        • Dou Q.
        • Chen H.
        • Yu L.
        • et al.
        Automatic detection of cerebral microbleeds from MR images via 3D convolutional neural networks.
        IEEE Trans Med Imaging. 2016; 35: 1182-1195
        • Mitra J.
        • Bourgeat P.
        • Fripp J.
        • et al.
        Lesion segmentation from multimodal MRI using random forest following ischemic stroke.
        Neuroimage. 2014; 98: 324-335
        • Wilke M.
        • de Haan B.
        • Juenger H.
        • et al.
        Manual, semi-automated, and automated delineation of chronic brain lesions: a comparison of methods.
        Neuroimage. 2011; 56: 2038-2046
        • Maier O.
        • Schröder C.
        • Forkert N.D.
        • et al.
        Classifiers for ischemic stroke lesion segmentation: a comparison study.
        PLoS One. 2015; 10 (Available at:) (Accessed November 5, 2018): e0145118
        • Muschelli J.
        • Sweeney E.M.
        • Ullman N.L.
        • et al.
        PItcHPERFeCT: primary intracranial hemorrhage probability estimation using random forests on CT.
        Neuroimage Clin. 2017; 14: 379-390
        • Xie Y.
        • Jiang B.
        • Gong E.
        • et al.
        Use of gradient boosting machine learning to predict patient outcome in acute ischemic stroke on the basis of imaging, demographic, and clinical information.
        Am J Roentgenol. 2019; 212: 44-51
        • van Os H.J.A.
        • Ramos L.A.
        • Hilbert A.
        • et al.
        Predicting outcome of endovascular treatment for acute ischemic stroke: Potential value of machine learning algorithms.
        Front Neurol. 2018; 9: 1-8
        • Serre T.
        Deep learning: the good , the bad , and the ugly.
        Annu Rev Vis Sci. 2019; 5: 399-426
        • Saba L.
        • Biswas M.
        • Kuppili V.
        • et al.
        The present and future of deep learning in radiology.
        Eur J Radiol. 2019; 114: 14-24