Updates on Deep Learning and Glioma

Use of Convolutional Neural Networks to Image Glioma Heterogeneity
Published:September 18, 2020DOI:https://doi.org/10.1016/j.nic.2020.07.002

      Keywords

      To read this article in full you will need to make a payment
      Purchase one-time access
      Subscribers receive full online access to your subscription and archive of back issues up to and including 2002.
      Content published before 2002 is available via pay-per-view purchase only.
      Subscribe to Neuroimaging Clinics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Stupp R.
        • Mason W.P.
        • van der Bent M.J.
        • et al.
        Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma.
        N Engl J Med. 2005; 352: 987-996
        • Chakraborty S.
        • Filippi C.G.
        • Burkhardt J.K.
        • et al.
        Durability of single dose intra-arterial bevacizumab after blood-brain barrier disruption for recurrent glioblastoma.
        J Exp Ther Oncol. 2016; 11: 261-267
        • Alter R.A.
        • White T.G.
        • Fanous A.A.
        • et al.
        Long-term benefit of intra-arterial bevacizumab for recurrent glioblastoma.
        J Exp Ther Oncol. 2017; 12: 67-71
        • Kaluson K.O.
        • Schneider J.R.
        • Chakraboty S.
        • et al.
        Superselective intra-arterial cerebral infusion of cetuximab with blood brain barrier disruption combined with stupp protocol for newly diagnosed GBM.
        J Exp Ther Oncol. 2018; 12: 23-229
        • Lang F.F.
        • Conrad C.
        • Gomez-Manzano C.
        • et al.
        Phase I study of DNX-2401 (Delta 24-RGD) oncolytic adenovirus: replication and immunotherapeutic effects in recurrent glioblastoma.
        J Clin Oncol. 2018; 36: 1419-1427
        • Onken J.
        • Staub-Bartelt F.
        • Najkoczy P.
        • et al.
        Acceptance and compliance of TTFields treatment among high grade glioma patients.
        J Neurooncol. 2018; 139: 17-184
        • Straube C.
        • Scherb H.
        • Gempt J.
        • et al.
        Adjuvant stereotactic fractionated radiotherapy to the resection cavity in recurrent glioblastoma: the GlioCave Study (NOA 17-ARO 2016/3-DKTK ROG Trial).
        BMC Cancer. 2018; 18: 15
        • Petersen C.T.
        • Krenciute G.
        Next generation CAR T-cells for the immunotherapy of high grade glioma.
        Front Oncol. 2019; 9: 69
        • Chow D.S.
        • Chang P.
        • Weinberg B.
        • et al.
        Imaging genetic heterogeneity in glioblastoma.
        AJR Am J Roentgenol. 2018; 210: 30-38
        • Sattiraju A.
        • Mintz A.
        Pericytes in glioblastoma: multifaceted role within tumor microenvironments and potential for therapeutic interventions.
        Adv Exp Med Biol. 2019; 1147: 65-91
        • Louis D.N.
        • Perry A.
        • Reifenberger G.
        • et al.
        The 2016 World Health Organization classification of tumors of the central nervous system: a summary.
        Acta Neuropathol. 2016; 131: 803-820
        • Patel A.P.
        • Tirosh I.
        • Trombetta J.J.
        • et al.
        Single-cell RNA-seq highlights intratumoral heterogeneity of primary glioblastoma.
        Science. 2014; 344: 1396-1401
        • Sottoriva A.
        • Spiteri J.
        • Piccirillo S.G.
        • et al.
        Intratumoral heterogeneity in human glioblastoma reflects cancer evolutionary dynamics.
        Proc Natl Acad Sci U S A. 2013; 110: 4009-4014
        • Le Cun Y.
        • Bengio Y.
        • Hinton G.
        Deep learning.
        Nature. 2015; 521: 436-444
        • Simonyan K.
        • Vedaldi A.
        • Zisserman A.
        Deep Inside Convolutional Neural Networks: Visualising Image Classification Models and Saliency Maps.
        (Available at:) (Accessed December 20, 2019)
      1. Krizhevsky A, Sutskever I, Hinton G. ImageNet Classification with Deep Convolutional Neural Networks. Abstract in Proceedings of Advances in Neural Information Processing Systems 25 (NIPS 2012). Lake Tahoe (NV), December 3, 2012.

        • He K.
        • Zhang X.
        • Ren S.
        • et al.
        Deep Residual Learning for Image Recognition.
        (Available at:) (Accessed December 21, 2019)
        • Ducray F.
        • Idbaih A.
        • Wang X.W.
        • et al.
        Predictive and prognostic factors for glioma.
        Expert Rev Anticancer Ther. 2011; 11: 781-789
        • Kickengereder P.
        • Sahm F.
        • Radbruch A.
        • et al.
        IDH mutation status is associated with a distinct hypoxia/angiogenesis transcriptome which is non-invasively predicable with rCBV imaging in human glioma.
        Sci Rep. 2015; 5: 16238
        • Law M.
        • Young R.J.
        • Babb J.S.
        • et al.
        Gliomas: predicting time to progression or survival with cerebral blood volume measurements at dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging.
        Radiology. 2008; 247: 490-498
        • Carillo J.A.
        • Lai A.
        • Nghiemphu P.L.
        • et al.
        Relationship between tumor enhancement, edema, IDH1 mutation status, MGMT promoter methylation, and survival in glioblastoma.
        AJNR Am J Neuroradiol. 2012; 33: 1349-1355
        • Paldor I.
        • Pearce F.C.
        • Drummond K.J.
        • et al.
        Frontal glioblastoma multiforme may be biologically distinct from non-frontal and multilobular tumors.
        J Clin Neurosci. 2016; 34: 128-132
        • Sonoda Y.
        • Shibahara I.
        • Kawaguchi T.
        • et al.
        Association between molecular alterations and tumor location and mri characteristics in anaplastic gliomas.
        Brain Tumor Pathol. 2015; 32: 99-104
        • Qi S.
        • Yu L.
        • Li H.
        • et al.
        Isocitrate dehydrogenase mutation is associated with tumor location and magnetic resonance imaging characteristics in astrocytic neoplasms.
        Onco Lett. 2014; 7: 1895-1902
        • Beiko J.
        • Suki D.
        • Hess K.R.
        • et al.
        IDH mutant malignant astrocytomas are more amenable to surgical resection and have a survival benefit associated with maximal surgical resection.
        Neuro Oncol. 2014; 16: 81-91
        • Yogananda C.G.B.
        • Shah B.R.
        • Vejdani-Jahromi M.
        • et al.
        A Novel Fully Automated MRI-based Deep Learning Method for Classification of IDH mutation status in brain gliomas.
        Neuro Oncol. 2020; 22: 402-411
        • Liang S.
        • Zhang R.
        • Liang D.
        • et al.
        Multimodal 3D DenseNet for IDH genotype prediction in gliomas.
        Genes. 2018; 9: 1-17
        • Chang P.
        • Grinband J.
        • Weinberg B.D.
        • et al.
        Deep learning convolutional neural networks accurately classify genetic mutations in glioma.
        AJNR Am J Neuroradiol. 2018; 39: 1201-1207
        • Li Z.
        • Wang Y.
        • Yu J.
        • et al.
        Deep learning based radiomics (DLR) and its usage in noninvasive IDH1 prediction for low grade glioma.
        Sci Rep. 2017; 7: 5467
        • Chang K.
        • Bai H.X.
        • Zhou H.
        • et al.
        Residual convolutional neural networks for determination of IDH status in low- and high grade gliomas from MR imaging.
        Clin Cancer Res. 2018; 24: 1073-1081
        • Xiong J.
        • Tan W.
        • Wen J.
        • et al.
        Combination of diffusion tensor imaging and conventional MRI correlates with isocitrate dehydrogenase1/2 Mutations but Not 1p19q genotyping in oligodendroglial tumors.
        Eur Radiol. 2016; 26: 1705-1715
        • Ge C.
        • Gu I.Y.
        • Jakola A.S.
        • et al.
        Deep learning and multi-sensor fusion for glioma classification using multistream 2D convolutional neural networks.
        Conf Proc IEEE Eng Med Biol Soc. 2018; 2018: 5894-5897
        • Akkus Z.
        • Ali I.
        • Sedlar J.
        • et al.
        Predicting deletion of chromosomal arms of 1p/19q in low-grade glioma from MR images using machine intelligence.
        J Digit Imaging. 2017; 30: 469-476
        • Hegi M.E.
        • Diserens A.C.
        • Gorlia T.
        • et al.
        MGMT gene silencing and benefit from temozolomide in glioblastoma.
        N Engl J Med. 2005; 352: 997-1003
        • Gorlia T.
        • van den Bent M.J.
        • Hegi M.E.
        • et al.
        Nomograms for predicting survival of patients with newly diagnosed glioblastoma: prognostic factor analysis of EORTC and NCIC Trial 26981-22981/CE.3.
        Lancet Oncol. 2008; 9: 29-38
        • Kansas V.G.
        • Zacharaki E.I.
        • Thomas G.A.
        • et al.
        Learning MRI-based classification models for MGMT methylation status prediction in glioblastoma.
        Comput Methods Programs Biomed. 2017; 140: 249-257
        • Drabycz S.
        • Roldan G.
        • de Robles P.
        • et al.
        An analysis of image texture, tumor location, and MGMT promoter methylation in glioblastoma using magnetic resonance imaging.
        Neuroimage. 2010; 49: 1398-1405
        • Moon W.J.
        • Choi J.W.
        • Roh H.G.
        • et al.
        Imaging parameters of high-grade gliomas in relation to the MGMT promoter methylation status: the CT, diffusion tensor, and perfusion MR imaging.
        Neuroradiology. 2012; 54: 555-563
        • Eoli M.
        • Menghi F.
        • Bruzzone M.G.
        • et al.
        Methylation of O6-Methylguanine DNA methyltransferase and loss of heterozygosity on 19q and/or 1p are overlapping features of secondary glioblastoma with prolonged survival.
        Clin Cancer Res. 2007; 13: 2606-2613
        • Ellingson B.M.
        • Lai A.
        • Harris R.J.
        • et al.
        Probabilistic radiographic atlas of glioblastoma phenotypes.
        AJNR Am J Neuroradiol. 2013; 34: 1326-1333
        • Romano A.
        • Calabria L.F.
        • Tavanti F.
        • et al.
        Apparent diffusion coefficient obtained by magnetic resonance imaging as a prognostic marker inglioblastomas: correlation with MGMT promoter methylation status.
        Eur Radiol. 2013; 23: 513-520
        • Han L.
        • Kamdar M.R.
        MRI to MGMT: predicting methylation status in glioblastoma using convolutional recurrent neural networks.
        Pac Symp Biocomput. 2018; 23: 331-342
      2. Levner I, Drabycz S, Roldan G, et al. Predicting MGMT methylation status of glioblastoma from MRI texture. In International Conference of Medical Image Computing and Computer-assisted Intervention-MICCAI. London, September 20, 2009. p. 552-530.

        • Korfiatis P.
        • Kline T.L.
        • Lachance D.H.
        • et al.
        Residual deep convolutional neural network predicts MGMT methylation status.
        J Digit Imaging. 2017; 30: 622-628
        • Young R.J.
        • Gupta A.
        • Shah A.D.
        • et al.
        Potential role of preoperative conventional MRI including diffusion measurements in assessing epidermal growth factor receptor gene amplification status in patients with glioblastoma.
        AJNR Am J Neuroradiol. 2013; 34: 2271-2277
        • Gupta A.
        • Young R.J.
        • Shah A.D.
        • et al.
        Pretreatment dynamic susceptibility contrast MRI perfusion in glioblastoma: prediction of EGFR gene amplification.
        Clin Neuroradiol. 2015; 25: 143-150
        • Hedyehzadeh M.
        • Maghooli K.
        • MomenGharibvand M.
        A comparison of the efficiency of using a deep CNN approach with other common regression methods for the prediction of EGFR expression in glioblastoma patients.
        J Digit Imaging. 2020; 33: 391-398
        • Nasseri M.
        • Gahramanov S.
        • Netto J.P.
        • et al.
        Evaluation of pseudoprogression in patients with glioblastoma multiforme using dynamic magnetic resonance imaging with ferumoxytol calls RANO criteria into question.
        Neuro Oncol. 2014; 16: 1146-1154
        • Abbasi A.W.
        • Westerlan H.E.
        • Holtman G.A.
        • et al.
        Incidence of tumor progression and pseudoprogression in high grade gliomas: a systematic review and meta-analysis.
        Clin Neuroradiol. 2018; 28: 401-411
        • Jang B.S.
        • Jeon S.H.
        • Kim I.H.
        • et al.
        Predictor of pseudoprogression versus progression using machine learning algorithm in glioblastoma.
        Sci Rep. 2018; 8: 12516
      3. Akbari H, Bakas S, Martinez-Lage M, et al. Quantitative radiomics and machine learning to distinguish true progression from pseudoprogression in patients with GBM. Presented at the 56th annual meeting of the American Society for Neuroradiology, Vancouver, BC, Canada, June 2–7, 2018.

        • Wang J.
        • Hu G.
        • Quan X.
        Analysis of the factors affecting the prognosis of glioblastoma patients.
        Open Med. 2019; 14: 331-335
        • Tian M.
        • Ma W.
        • Chen Y.
        • et al.
        Impact of gender on the survival of patients with glioblastoma.
        Biosci Rep. 2018; 38: 1-9
        • Thumma S.R.
        • Fairbanks R.K.
        • Lamoureux W.T.
        • et al.
        Effect of pretreatment clinical factors on overall survival in glioblastoma multiforme: a surveillance epidemiology and end results (SEER) population analysis.
        World J Surg Oncol. 2012; 10: 75
        • LaCroix M.
        • Abi-Said D.
        • Fourney D.R.
        • et al.
        A multivariate analysis of 416 patients with glioblastoma multiforme: prognosis, extent of resection, and survival.
        J Neurosurg. 2001; 95: 190-198
        • Pope W.B.
        • Sayre J.
        • Perlina A.
        • et al.
        MR imaging correlates of survival in patients with high grade glioma.
        AJNR Am J Neuroradiol. 2005; 26: 2466-2474
        • Jain R.
        • Poisson L.
        • Narang J.
        • et al.
        Genomic mapping and survival prediction in glioblastoma: molecular subclassification strengthened by hemodynamic imaging biomarkers.
        Radiology. 2013; 267: 212-220
        • Jain R.
        • Poisson L.M.
        • Gutman D.
        • et al.
        Outcome prediction in patients with glioblastoma by using imaging, clinical, and genomic biomarkers: focus on the nonenhancing component of the tumor.
        Radiology. 2014; 272: 484-493
        • Sun L.
        • Zhang S.
        • Chen H.
        • et al.
        Brain tumor segmentation and survival prediction using multimodal MRI scans with deep learning.
        Front Neurosci. 2019; 13: 1-8
        • Nie D.
        • Lu J.
        • Zhang H.
        • et al.
        Multi-channel 3D deep feature learning for survival time prediction of brain tumor patients using multi-modal neuroimages.
        Sci Rep. 2019; 9: 1103
        • Nie D.
        • Zhang H.
        • Adeli E.
        • et al.
        3D deep learning for multi-modal imaging-guided survival time prediction of brain tumor patients.
        Med Image Comput Assist Interv. 2016; 9901: 212-220
        • Chang P.
        • Maffie J.
        • Lignelli A.
        • et al.
        Deep Learning and Glioma Radiogenomics: A TCIA/TCGA Project. Abstract in Proceedings of the Annual American Society of Neuroradiology (ASNR) Meeting.
        Long Beach (CA), 2017