Diverse Applications of Artificial Intelligence in Neuroradiology

Published:September 17, 2020DOI:https://doi.org/10.1016/j.nic.2020.07.003

      Keywords

      To read this article in full you will need to make a payment
      Purchase one-time access
      Subscribers receive full online access to your subscription and archive of back issues up to and including 2002.
      Content published before 2002 is available via pay-per-view purchase only.
      Subscribe to Neuroimaging Clinics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • World Health Organization
        Global health estimates 2015: Disease burden by cause, age, sex, by country and by region, 2000–2015. Geneva.
        (Available at:) (Accessed August 3, 2019)
        • Hassabis D.
        • Kumaran D.
        • Summerfield C.
        • et al.
        Neuroscience-Inspired Artificial Intelligence.
        Neuron. 2017; 95: 245-258
        • Kriegeskorte N.
        Deep neural networks: a new framework for modeling biological vision and brain information processing.
        Annu Rev Vis Sci. 2015; 1: 417-446
        • Erickson B.J.
        • Korfiatis P.
        • Akkus Z.
        • et al.
        Machine learning for medical imaging.
        Radiographics. 2017; 37: 505-515
        • Kohli M.
        • Prevedello L.M.
        • Filice R.W.
        • et al.
        Implementing machine learning in radiology practice and research.
        AJR Am J Roentgenol. 2017; 208: 754-760
        • Viera S.
        • Pinaya W.H.L.
        • Mechelli A.
        Using deep learning to investigate the neuroimaging correlates of psychiatric and neurological disorders: Methods and applications.
        Neurosci Biobehav Rev. 2017; 74: 58-75
        • Zaharchuk G.
        • Gong E.
        • Wintermark M.
        • et al.
        Deep learning in neuroradiology.
        AJNR Am J Neuroradiol. 2018; https://doi.org/10.3174/ajnr.A5543
        • Rudie J.D.
        • Rauschecker A.M.
        • Bryan R.N.
        • et al.
        Emerging applications of artificial intelligence in neuro-oncology.
        Radiology. 2019; 290: 607-618
        • Hornik K.
        • Stinchcombe M.
        • White H.
        Multilayer feedforward networks are universal approximators.
        Neural Network. 1989; 2: 359-366
        • Chowdhury F.A.
        • Nashef L.
        • Elwes R.D.
        Misdiagnosis in epilepsy: a review and recognition of diagnostic uncertainty.
        Eur J Neurol. 2008; 15: 1034-1042
        • Solomon A.J.
        • Bourdette D.N.
        • Cross A.H.
        • et al.
        The contemporary spectrum of multiple sclerosis misdiagnosis: A multicenter study.
        Neurology. 2016; 87: 1393-1399
        • Tarnutzer A.A.
        • Lee S.H.
        • Robinson K.A.
        • et al.
        ED misdiagnosis of cerebrovascular events in the era of modern neuroimaging: A meta-analysis.
        Neurology. 2017; 88: 1468-1477
        • Lees K.R.
        • Bluhmki E.
        • von Kummer R.
        • et al.
        Time to treatment with intravenous alteplase and outcome in stroke: an updated pooled analysis of ECASS, ATLANTIS, NINDS, and EPITHET trials.
        Lancet. 2010; 375: 1695-1703
        • Saver J.L.
        • Goyal M.
        • van der Lugt A.
        • et al.
        Time to treatment with endovascular thrombectomy and outcomes from ischemic stroke: a meta-analysis.
        JAMA. 2016; 316: 1279-1288
        • Chen M.C.
        • Ball R.L.
        • Yang L.
        • et al.
        Deep learning to classify radiology free-text reports.
        Radiology. 2017; 286: 845-852
        • Winkel D.J.
        • Heye T.
        • Weikert T.J.
        • et al.
        Evaluation of an AI-based detection software for acute findings in abdominal computed tomography scans: toward an automated work list prioritization of routine CT examinations.
        Invest Radiol. 2019; 54: 55-59
        • Steinkamp J.M.
        • Chambers C.M.
        • Lalevic D.
        • et al.
        Automated organ-level classification of freetext pathology reports to support a radiology follow-up tracking engine.
        Radiol Artif Intell. 2019; 1: e180052
        • Arbabshirani M.R.
        • Fornwalt B.K.
        • Mongelluzzo G.J.
        • et al.
        Advanced machine learning in action: identification of intracranial hemorrhage on computed tomography scans of the head with clinical workflow integration.
        NPJ Digit Med. 2018; 1: 9
        • Agarwal V.
        • Bump G.M.
        • Heller M.T.
        • et al.
        Resident case volume correlates with clinical performance: finding the sweet spot.
        Acad Radiol. 2019; 26: 136-140
        • Duong M.T.
        • Rauschecker A.M.
        • Rudie J.D.
        • et al.
        Artificial intelligence for precision education in radiology.
        Br J Radiol. 2019; 92: 20190389
        • McCoy D.B.
        • Dupont S.M.
        • Gros C.
        • et al.
        Convolutional neural network–based automated segmentation of the spinal cord and contusion injury: deep learning biomarker correlates of motor impairment in acute spinal cord injury.
        AJNR Am J Neuroradiol. 2019; 40: 37-44
      1. Sharma B, Venugopalan K. Classification of hematomas in brain CT images using neural network. 2014 International Conference on Issues and Challenges in Intelligent Computing Techniques (ICICT). https://doi.org/10.1109/ICICICT.2014.6781250. Ghaziabad (India), February 7, 2014.

        • Chang P.D.
        • Kuoy E.
        • Grinband J.
        • et al.
        Hybrid 3D/2D Convolutional Neural Network for Hemorrhage Evaluation on Head CT.
        AJNR Am J Neuroradiol. 2018; 39: 1609-1616
        • Stone J.R.
        • Wilde E.A.
        • Taylor B.A.
        • et al.
        Supervised learning technique for the automated identification of white matter hyperintensities in traumatic brain injury.
        Brain Inj. 2016; 30: 1458-1468
        • Achrol A.S.
        • Rennert R.C.
        • Anders C.
        • et al.
        Brain metastases.
        Nat Rev Dis Primers. 2019; 5https://doi.org/10.1038/s41572-018-0055-y
        • Grøvik E.
        • Yi D.
        • Iv M.
        • et al.
        Deep learning enables automatic detection and segmentation of brain metastases on multisequence MRI.
        J Magn Reson Imaging. 2019; https://doi.org/10.1002/jmri.26766
        • Charron O.
        • Lallement A.
        • Jarnet D.
        • et al.
        Automatic detection and segmentation of brain metastases on multimodal MR images with a deep convolutional neural network.
        Comput Biol Med. 2018; 95: 43-54
        • Liu Y.
        • Stojadinovic S.
        • Hrycushko B.
        • et al.
        A deep convolutional neural network-based automatic delineation strategy for multiple brain metastases stereotactic radiosurgery.
        PLoS One. 2017; 12: e0185844
        • Thompson A.J.
        • Banwell B.L.
        • Barkhof F.
        • et al.
        Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria.
        Lancet Neurol. 2018; 17: 162-173
        • Yoo Y.
        • Tang L.Y.
        • Brosch T.
        • et al.
        Deep learning of joint myelin and T1w MRI features in normal-appearing brain tissue to distinguish between multiple sclerosis patients and healthy controls.
        Neuroimage Clin. 2018; 17: 169-178
        • Fartaria M.J.
        • Bonnier G.
        • Roche A.
        • et al.
        Automated detection of white matter and cortical lesions in early stages of multiple sclerosis.
        J Magn Reson Imaging. 2016; 43: 1445-1464
        • Lao Z.
        • Shen D.
        • Liu D.
        • et al.
        Computer-assisted segmentation of white matter lesions in 3D MR images using support vector machine.
        Acad Radiol. 2008; 15: 300-313
        • Bilello M.
        • Doshi J.
        • Nabavizadeh S.A.
        • et al.
        Correlating cognitive decline with white matter lesion and brain atrophy: magnetic resonance imaging measurements in Alzheimer’s disease.
        J Alzheimers Dis. 2015; 48: 987-994
        • Rachmadi M.F.
        • Valdés-Hernández M.D.C.
        • Agan M.L.F.
        • et al.
        Segmentation of white matter hyperintensities using convolutional neural networks with global spatial information in routine clinical brain MRI with none or mild vascular pathology.
        Comput Med Imaging Graph. 2018; 66: 28-43
        • Duong M.T.
        • Rudie J.D.
        • Wang J.
        • et al.
        Convolutional neural network for automated FLAIR lesion segmentation on clinical brain MR imaging.
        AJNR Am J Neuroradiol. 2019; 40: 1282-1290
        • Donald J.J.
        • Barnard S.A.
        Common patterns in 558 diagnostic radiology errors.
        J Med Imaging Radiat Oncol. 2012; 56: 173-178
        • Waite S.
        • Scott J.
        • Gale B.
        • et al.
        Interpretive Error in Radiology.
        AJNR Am J Roentgenol. 2017; 208: 739-749
        • Novosad P.
        • Fonov V.
        • Collins D.L.
        • et al.
        Accurate and robust segmentation of neuroanatomy in T1-weighted MRI by combining spatial priors with deep convolutional neural networks.
        Hum Brain Mapp. 2019; https://doi.org/10.1002/hbm.24803
        • Wachinger C.
        • Reuter M.
        • Klein T.
        DeepNAT: deep convolutional neural network for segmenting neuroanatomy.
        Neuroimage. 2018; 170: 434-445
        • Li S.
        • Shi F.
        • Pu F.
        • et al.
        Hippocampal shape analysis of alzheimer disease based on machine learning methods.
        AJNR Am J Neuroradiol. 2007; 28: 1339-1345
        • Tsao S.
        • Gajawelli N.
        • Zhou J.
        • et al.
        Feature selective temporal prediction of Alzheimer's disease progression using hippocampus surface morphometry.
        Brain Behav. 2017; 7: e00733
        • Ataloglou D.
        • Dimou A.
        • Zarpalas D.
        • et al.
        Fast and precise hippocampus segmentation through deep convolutional neural network ensembles and transfer learning.
        Neuroinformatics. 2019; https://doi.org/10.1007/s12021-019-09417-y
        • Xie L.
        • Wisse L.E.M.
        • Pluta J.
        • et al.
        Automated segmentation of medial temporal lobe subregions on in vivo T1-weighted MRI in early stages of Alzheimer's disease.
        Hum Brain Mapp. 2019; 40: 3431-3451
        • Hobbs N.Z.
        • Henley S.M.
        • Wild E.J.
        • et al.
        Automated quantification of caudate atrophy by local registration of serial MRI: evaluation and application in Huntington's disease.
        Neuroimage. 2009; 47: 1659-1665
        • Rizk-Jackson A.
        • Stoffers D.
        • Sheldon S.
        • et al.
        Evaluating imaging biomarkers for neurodegeneration in pre-symptomatic Huntington's disease using machine learning techniques.
        Neuroimage. 2011; 56: 788-796
        • Brown A.D.
        • Marotta T.R.
        A Natural Language Processing-based Model to Automate MRI Brain Protocol Selection and Prioritization.
        Acad Radiol. 2017; 24: 160-166
        • Kang H.
        • Hii M.
        • Le M.
        • et al.
        Gadolinium deposition in deep brain structures: relationship with dose and ionization of linear gadolinium-based contrast agents.
        AJNR Am J Neuroradiol. 2018; 39: 1597-1603
        • Gong E.
        • Pauly J.M.
        • Wintermark M.
        • et al.
        Deep learning enables reduced gadolinium dose for contrast-enhanced brain MRI.
        J Magn Reson Imaging. 2018; 48: 330-340
        • Kleesiek J.
        • Morshuis J.N.
        • Isensee F.
        • et al.
        Can Virtual Contrast Enhancement in Brain MRI Replace Gadolinium?: A Feasibility Study.
        Invest Radiol. 2019; 54: 653-660
        • Chen H.
        • Zhang Y.
        • Zhang W.
        • et al.
        Low-dose CT via convolutional neural network.
        Biomed Opt Express. 2017; 8: 679-694
        • Kang E.
        • Min J.
        • Ye J.C.
        A deep convolutional neural network using directional wavelets for low-dose X-ray CT reconstruction.
        Med Phys. 2017; 44: 1-32
        • Chen K.T.
        • Gong E.
        • Macruz FBdC.
        • et al.
        Ultra–low-dose 18F-florbetaben amyloid PET imaging using deep learning with multi-contrast MRI inputs.
        Radiology. 2018; 290: 249-256
        • Chen K.T.
        • Schürer M.
        • Ouyang J.
        • et al.
        Quantitative brain imaging using integrated PET/MRI Investigating the optimal method to generalize an ultra-low-dose amyloid PET/MRI deep learning network across scanner models.
        J Cereb Blood Flow Metab. 2019; 39: 113-114
        • Kaplan S.
        • Zhu Y.M.
        Full-dose PET image estimation from low-dose PET image using deep learning: a pilot study.
        J Digit Imaging. 2018; https://doi.org/10.1007/s10278-018-0150-3
        • Xiang L.
        • Qiao Y.
        • Nie D.
        • et al.
        Deep auto-context convolutional neural networks for standard-dose PET image estimation from low-dose PET/MRI.
        Neurocomputing. 2017; 267: 406-416
        • Ouyang J.
        • Chen K.T.
        • Gong E.
        • et al.
        Ultra-low-dose PET reconstruction using generative adversarial network with feature matching and task-specific perceptual loss.
        Med Phys. 2019; https://doi.org/10.1002/mp.13626
        • Zhu B.
        • Liu J.Z.
        • Cauley S.F.
        • et al.
        Image reconstruction by domain-transform manifold learning.
        Nature. 2018; 555: 487-492
        • Sreekumari A.
        • Shanbhag D.
        • Yeo D.
        • et al.
        A deep learning–based approach to reduce rescan and recall rates in clinical MRI examinations.
        AJNR Am J Neuroradiol. 2019; https://doi.org/10.3174/ajnr.A5926
      2. Chen P-H, Botzolakis E, Mohan S, et al. Feasibility of streamlining an interactive Bayesian-based diagnostic support tool designed for clinical practice. In: Zhang J, Cook TS, editors. Proceedings of SPIE Medical Imaging. San Diego (CA), April 5, 2016. pp.97890C.

      3. Duda JT, Botzolakis E, Chen P-H, et al. Bayesian network interface for assisting radiology interpretation and education. In: Zhang J, Chen P.-H, editors. Proceedings of SPIE Medical imaging. Houston (TX), March 6, 2018. pp.26.

        • Chen P.-H.
        • Loehfelm T.W.
        • Kamer A.P.
        • et al.
        Toward data-driven radiology education-early experience building multi-institutional academic trainee interpretation log database (MATILDA).
        J Digit Imaging. 2016; 29: 638-644
        • Tabibian B.
        • Upadhyay U.
        • De A.
        • et al.
        Enhancing human learning via spaced repetition optimization.
        Proc Natl Acad Sci U S A. 2019; 116: 3988-3993
        • Marzullo A.
        • Kocevar G.
        • Stamile C.
        • et al.
        Classification of multiple sclerosis clinical profiles via graph convolutional neural networks.
        Front Neurosci. 2019; 12: 594
        • Kanber B.
        • Nachev P.
        • Barkhof F.
        • et al.
        High-dimensional detection of imaging response to treatment in multiple sclerosis.
        NPJ Digit Med. 2019; 2: 49
        • Arani L.A.
        • Hosseini A.
        • Asadi F.
        • et al.
        Intelligent computer systems for multiple sclerosis diagnosis: a systematic review of reasoning techniques and methods.
        Acta Inform Med. 2018; 26: 258-264
        • Rudie J.D.
        • Colby J.B.
        • Salamon N.
        Machine learning classification of mesial temporal sclerosis in epilepsy patients.
        Epilepsy Res. 2015; 117: 63-69
        • Del Gaizo J.
        • Mofrad N.
        • Jensen J.H.
        • et al.
        Using machine learning to classify temporal lobe epilepsy based on diffusion MRI.
        Brain Behav. 2017; 7: e00801
        • Ullah I.
        • Hussain M.
        • Qazi E-u-H.
        • et al.
        An automated system for epilepsy detection using EEG brain signals based on deep learning approach.
        Expert Syst Appl. 2018; 107: 61-71
        • Zhou M.
        • Tian C.
        • Cao R.
        • et al.
        Epileptic seizure detection based on EEG signals and CNN.
        Front Neuroinformatics. 2018; 12: 95
        • Hossain M.S.
        • Amin S.U.
        • Alsulaiman M.
        • et al.
        Applying deep learning for epilepsy seizure detection and brain mapping visualization.
        ACM Trans Multimed Comput Comm Appl. 2019; 15: 10
        • Kiral-Kornek I.
        • Roy S.
        • Nurse E.
        • et al.
        Epileptic seizure prediction using big data and deep learning: toward a mobile system.
        EBioMedicine. 2018; 27: 103-111
        • Krumholz A.
        • Wiebe S.
        • Gronseth G.S.
        • et al.
        Evidence-based guideline: management of an unprovoked first seizure in adults: report of the guideline development subcommittee of the American Academy of Neurology and the American Epilepsy Society.
        Neurology. 2015; 84: 1705-1713
        • Gleichgerrcht E.
        • Munsell B.
        • Bhatia S.
        • et al.
        Deep learning applied to whole brain connectome to determine seizure control after epilepsy surgery.
        Epilepsia. 2018; 59: 1643-1654
        • Nagaraj V.
        • Lee S.
        • Krook-Magnuson E.
        • et al.
        The Future of Seizure Prediction and Intervention: Closing the loop.
        J Clin Neurophysiol. 2015; 32: 194-206
        • Alzheimer’s Association
        2019 Alzheimer’s Disease Facts and Figures.
        Alzheimers Dement. 2019; 15: 321-387
        • Ding Y.
        • Sohn J.H.
        • Kawczynski M.G.
        • et al.
        A deep learning model to predict a diagnosis of alzheimer disease by using 18F-FDG PET of the brain.
        Radiology. 2019; 290: 456-464
        • Li H.
        • Habes M.
        • Wolk D.A.
        • et al.
        A deep learning model for early prediction of Alzheimer’s disease dementia based on hippocampal magnetic resonance imaging data.
        Alzheimers Dement. 2019; : 1-19https://doi.org/10.1016/j.jalz.2019.02.007
        • Katako A.
        • Shelton P.
        • Goertzen A.L.
        • et al.
        Machine learning identified an Alzheimer’s disease-related FDG-PET pattern which is also expressed in Lewy body dementia and Parkinson’s disease dementia.
        Sci Rep. 2018; 8: 13236
        • Basaia S.
        • Agosta F.
        • Wagner L.
        • et al.
        Automated classification of Alzheimer's disease and mild cognitive impairment using a single MRI and deep neural networks.
        NeuroImage: Clin. 2019; 21: 101645
        • Young A.L.
        • Marinescu R.V.
        • Oxtoby N.P.
        • et al.
        Uncovering the heterogeneity and temporal complexity of neurodegenerative diseases with Subtype and Stage Inference.
        Nat Commun. 2018; 9: 4273
        • Jack C.R.
        • Knopman D.S.
        • Jagust W.J.
        • et al.
        Update on hypothetical model of Alzheimer’s disease biomarkers.
        Lancet Neurol. 2013; 12: 207-216
        • Spasov S.
        • Passamonti L.
        • Duggento A.
        • et al.
        A parameter-efficient deep learning approach to predict conversion from mild cognitive impairment to Alzheimer's disease.
        NeuroImage. 2019; 189: 276-287
        • Ashton N.J.
        • Nevado-Holgado A.J.
        • Barber I.S.
        • et al.
        A plasma protein classifier for predicting amyloid burden for preclinical Alzheimer’s disease.
        Sci Adv. 2019; 5: eaau7220
        • Goudey B.
        • Fung B.J.
        • Schieber C.
        • et al.
        A blood-based signature of cerebrospinal fluid Aβ1-42 status.
        Sci Rep. 2019; 9: 4163
        • Wang L.
        • Sha L.
        • Lakin J.R.
        • et al.
        Development and validation of a deep learning algorithm for mortality prediction in selecting patients with dementia for earlier palliative care interventions.
        JAMA Netw Open. 2019; 2: e196972
        • Tang Z.
        • Chuang K.V.
        • DeCarli C.
        • et al.
        Interpretable classification of Alzheimer’s disease pathologies with a convolutional neural network pipeline.
        Nat Commun. 2019; 10: 2173
        • Ye Q.
        • Xia Y.
        • Yao Z.
        Classification of gait patterns in patients with neurodegenerative disease using adaptive neuro-fuzzy inference system.
        Comput Math Methods Med. 2018; : 9831252https://doi.org/10.1155/2018/9831252
        • Odish O.F.F.
        • Johnsen K.
        • van Someren P.
        • et al.
        EEG may serve as a biomarker in Huntington’s disease using machine learning automatic classification.
        Sci Rep. 2018; 8: 16090
        • de Tommaso M.
        • De Carlo F.
        • Difruscolo O.
        • et al.
        Detection of subclinical brain electrical activity changes in Huntington's disease using artificial neural networks.
        Clin Neurophysiol. 2003; 114: 1237-1245
        • Jha S.
        • Topol E.J.
        Adapting to artificial intelligence: radiologists and pathologists as information specialists.
        JAMA. 2016; 316: 2353-2354
        • Kermany D.S.
        • Goldbaum M.
        • Cai W.
        • et al.
        Identifying medical diagnoses and treatable diseases by image-based deep learning.
        Cell. 2018; 172: 1122-1131
        • Binder T.
        • Tantaoui E.M.
        • Pati P.
        • et al.
        Multi-organ gland segmentation using deep learning.
        Front Med. 2019; 6: 173
        • Holzinger A.
        • Langs G.
        • Denk H.
        • et al.
        Causability and explainability of artificial intelligence in medicine.
        Wiley Interdiscip Rev Data Min Knowl Discov. 2019; 9: e1312
        • Walker E.A.
        • Petscavage-Thomas J.M.
        • Fotos J.S.
        • et al.
        Quality metrics currently used in academic radiology departments: results of the QUALMET survey.
        Br J Radiol. 2017; 90: 20160827
        • Tjoa E.
        • Guan C.
        A Survey on Explainable Artificial Intelligence (XAI): Towards Medical XAI.
        arXiv. 2019; 1907 (Available at:): 07374v3
        • Rauschecker A.M.
        • Rudie J.D.
        • Xie L.
        • et al.
        Artificial Intelligence System Approaching Neuroradiologist-level Differential Diagnosis Accuracy at Brain MRI.
        Radiology. 2020; 295: 626-637https://doi.org/10.1148/radiol.2020190283
      4. Rudie JD, Rauschecker AM, Xie L, et al. Subspecialty-level deep gray matter differential diagnoses with deep learning and Bayesian networks on clinical brain MRI: a pilot study. Radiology: Artificial Intelligence, in press.