An East Coast Perspective on Artificial Intelligence and Machine Learning: Part 1

Hemorrhagic Stroke Imaging and Triage
Published:September 17, 2020DOI:https://doi.org/10.1016/j.nic.2020.07.005

      Keywords

      To read this article in full you will need to make a payment
      Purchase one-time access
      Subscribers receive full online access to your subscription and archive of back issues up to and including 2002.
      Content published before 2002 is available via pay-per-view purchase only.
      Subscribe to Neuroimaging Clinics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Benjamin E.J.
        • Blaha M.J.
        • Chiuve S.E.
        • et al.
        Heart disease and stroke statistics-2017 update: a report from the American Heart Association.
        Circulation. 2017; 135: e146-e603
        • Writing Group Members
        • Mozaffarian D.
        • Benjamin E.J.
        • et al.
        Heart disease and stroke statistics-2016 update: a report from the American Heart Association.
        Circulation. 2016; 133: e38-e360
        • Gebel J.M.
        • Broderick J.P.
        Intracerebral hemorrhage.
        Neurol Clin. 2000; 18: 419-438
        • Malhotra K.
        • Gornbein J.
        • Saver J.L.
        Ischemic strokes due to large-vessel occlusions contribute disproportionately to stroke-related dependence and death: a review.
        Front Neurol. 2017; 8: 651
        • Romero J.M.
        • Brouwers H.B.
        • Lu J.
        • et al.
        Prospective validation of the computed tomographic angiography spot sign score for intracerebral hemorrhage.
        Stroke. 2013; 44: 3097-3102
        • Fiebach Jochen B.
        • Schellinger Peter D.
        • Achim G.
        • et al.
        Stroke magnetic resonance imaging is accurate in hyperacute intracerebral hemorrhage.
        Stroke. 2004; 35: 502-506
        • Chalela J.A.
        • Kidwell C.S.
        • Nentwich L.M.
        • et al.
        Magnetic resonance imaging and computed tomography in emergency assessment of patients with suspected acute stroke: a prospective comparison.
        Lancet Lond Engl. 2007; 369: 293-298
        • Arbabshirani M.R.
        • Fornwalt B.K.
        • Mongelluzzo G.J.
        • et al.
        Advanced machine learning in action: identification of intracranial hemorrhage on computed tomography scans of the head with clinical workflow integration.
        NPJ Digit Med. 2018; 1: 1-7
        • Lee H.
        • Yune S.
        • Mansouri M.
        • et al.
        An explainable deep-learning algorithm for the detection of acute intracranial haemorrhage from small datasets.
        Nat Biomed Eng. 2019; 3: 173-182
        • Chilamkurthy S.
        • Ghosh R.
        • Tanamala S.
        • et al.
        Deep learning algorithms for detection of critical findings in head CT scans: a retrospective study.
        Lancet Lond Engl. 2018; 392: 2388-2396
        • Coorens N.
        • Krishnam S.P.
        • Paramhans S.
        • et al.
        Segmentation on non-contrast computed tomography scans using a masked-loss U-Net.
        University of Twente, Enschede (the Netherlands)2019
      1. Ronneberger O, Fischer P, Brox T. U-Net: Convolutional Networks for Biomedical Image Segmentation. In: Navab N, Hornegger J, Wells W, et al, editors. Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015. MICCAI 2015. Lecture Notes in Computer Science, vol 9351. Springer, Cham. https://doi.org/10.1007/978-3-319-24574-4_28.

        • Feigin V.L.
        • Lawes C.M.M.
        • Bennett D.A.
        • et al.
        Worldwide stroke incidence and early case fatality reported in 56 population-based studies: a systematic review.
        Lancet Neurol. 2009; 8: 355-369
        • Demchuk A.M.
        • Dowlatshahi D.
        • Rodriguez-Luna D.
        • et al.
        Prediction of haematoma growth and outcome in patients with intracerebral haemorrhage using the CT-angiography spot sign (PREDICT): a prospective observational study.
        Lancet Neurol. 2012; 11: 307-314
        • Brott T.
        • Broderick J.
        • Kothari R.
        • et al.
        Early hemorrhage growth in patients with intracerebral hemorrhage.
        Stroke. 1997; 28: 1-5
        • Flibotte J.J.
        • Hagan N.
        • O’Donnell J.
        • et al.
        Warfarin, hematoma expansion, and outcome of intracerebral hemorrhage.
        Neurology. 2004; 63: 1059-1064
        • Davis S.M.
        • Broderick J.
        • Hennerici M.
        • et al.
        Hematoma growth is a determinant of mortality and poor outcome after intracerebral hemorrhage.
        Neurology. 2006; 66: 1175-1181
        • Takeda R.
        • Ogura T.
        • Ooigawa H.
        • et al.
        A practical prediction model for early hematoma expansion in spontaneous deep ganglionic intracerebral hemorrhage.
        Clin Neurol Neurosurg. 2013; 115: 1028-1031
        • Brouwers H.B.
        • Chang Y.
        • Falcone G.J.
        • et al.
        Predicting hematoma expansion after primary intracerebral hemorrhage.
        JAMA Neurol. 2014; 71: 158-164
        • Barras C.D.
        • Tress B.M.
        • Christensen S.
        • et al.
        Quantitative CT densitometry for predicting intracerebral hemorrhage growth.
        Am J Neuroradiol. 2013; 34: 1139-1144
        • Boulouis G.
        • Morotti A.
        • Charidimou A.
        • et al.
        Noncontrast computed tomography markers of intracerebral hemorrhage expansion.
        Stroke. 2017; 48: 1120-1125
        • Delgado Almandoz J.E.
        • Yoo A.J.
        • Stone M.J.
        • et al.
        Systematic characterization of the computed tomography angiography spot sign in primary intracerebral hemorrhage identifies patients at highest risk for hematoma expansion.
        Stroke J Cereb Circ. 2009; 40: 2994-3000
        • Boulouis G.
        • Morotti A.
        • Brouwers H.B.
        • et al.
        Association Between Hypodensities Detected by Computed Tomography and Hematoma Expansion in Patients With Intracerebral Hemorrhage.
        JAMA Neurol. 2016; 73: 961-968
        • Wada R.
        • Aviv R.I.
        • Fox A.J.
        • et al.
        CT angiography “spot sign” predicts hematoma expansion in acute intracerebral hemorrhage.
        Stroke. 2007; 38: 1257-1262
        • Phan C.M.
        • Yoo A.J.
        • Hirsch J.A.
        • et al.
        Differentiation of hemorrhage from iodinated contrast in different intracranial compartments using dual-energy head CT.
        AJNR Am J Neuroradiol. 2012; 33: 1088-1094
        • Giudice A.D.
        • D’Amico D.
        • Sobesky J.
        • et al.
        Accuracy of the spot sign on computed tomography angiography as a predictor of haematoma enlargement after acute spontaneous intracerebral haemorrhage: a systematic review.
        Cerebrovasc Dis. 2014; 37: 268-276
        • Du F.-Z.
        • Jiang R.
        • Gu M.
        • et al.
        The accuracy of spot sign in predicting hematoma expansion after intracerebral hemorrhage: a systematic review and meta-analysis.
        PLoS One. 2014; 9: e115777
        • Li Q.
        • Liu Q.-J.
        • Yang W.-S.
        • et al.
        Island sign: an imaging predictor for early hematoma expansion and poor outcome in patients with intracerebral hemorrhage.
        Stroke. 2017; 48: 3019-3025
        • Yu Z.
        • Zheng J.
        • Ali H.
        • et al.
        Significance of satellite sign and spot sign in predicting hematoma expansion in spontaneous intracerebral hemorrhage.
        Clin Neurol Neurosurg. 2017; 162: 67-71
        • Yu Z.
        • Zheng J.
        • Ma L.
        • et al.
        The predictive accuracy of the black hole sign and the spot sign for hematoma expansion in patients with spontaneous intracerebral hemorrhage.
        Neurol Sci. 2017; 38: 1591-1597
        • Li Q.
        • Yang W.-S.
        • Wang X.-C.
        • et al.
        Blend sign predicts poor outcome in patients with intracerebral hemorrhage.
        PLoS One. 2017; 12: e0183082
        • Selariu E.
        • Zia E.
        • Brizzi M.
        • et al.
        Swirl sign in intracerebral haemorrhage: definition, prevalence, reliability and prognostic value.
        BMC Neurol. 2012; 12: 109
        • Blacquiere D.
        • Demchuk A.M.
        • Al-Hazzaa M.
        • et al.
        Intracerebral hematoma morphologic appearance on noncontrast computed tomography predicts significant hematoma expansion.
        Stroke. 2015; 46: 3111-3116
        • Tan C.O.
        • Lam S.
        • Kuppens D.
        • et al.
        Spot and diffuse signs: quantitative markers of intracranial hematoma expansion at dual-energy CT.
        Radiology. 2018; 290: 179-186
      2. Lipman K. Deep learning-based prediction of intracerebral hemorrhage expansion with Dual-Energy Computed Tomography. Oral Presentation presented at the: ASNR 2020, 58th Annual Meeting; Las Vegas, NV, June 30, 2020.