The Problem of Neurovascular Uncoupling

  • Shruti Agarwal
    Affiliations
    Division of Neuroradiology, The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Baltimore, MD 21287, USA
    Search for articles by this author
  • Haris I. Sair
    Affiliations
    Division of Neuroradiology, The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Baltimore, MD 21287, USA

    The Malone Center for Engineering in Healthcare, The Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA
    Search for articles by this author
  • Jay J. Pillai
    Correspondence
    Corresponding author. Division of Neuroradiology, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins Hospital, Phipps B-100, 600 North Wolfe Street, Baltimore, MD 21287.
    Affiliations
    Division of Neuroradiology, The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Baltimore, MD 21287, USA

    Department of Neurosurgery, Johns Hopkins University School of Medicine, 1800 Orleans Street, Baltimore, MD 21287, USA
    Search for articles by this author
Published:October 28, 2020DOI:https://doi.org/10.1016/j.nic.2020.09.003

      Keywords

      To read this article in full you will need to make a payment
      Purchase one-time access
      Subscribers receive full online access to your subscription and archive of back issues up to and including 2002.
      Content published before 2002 is available via pay-per-view purchase only.
      Subscribe to Neuroimaging Clinics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Belliveau J.W.
        • Kennedy Jr., D.N.
        • McKinstry R.C.
        • et al.
        Functional mapping of the human visual cortex by magnetic resonance imaging.
        Science. 1991; 254: 716-719
        • Ogawa S.
        • Tank D.W.
        • Menon R.
        • et al.
        Intrinsic signal changes accompanying sensory stimulation: functional brain mapping with magnetic resonance imaging.
        Proc Natl Acad Sci U S A. 1992; 89: 5951-5955
        • Biswal B.
        • Yetkin F.Z.
        • Haughton V.M.
        • et al.
        Functional Connectivity in the Motor Cortex of Resting Human Brain Using Echo-Planar Mri.
        Magn Reson Med. 1995; 34: 537-541
        • Raichle M.E.
        • Snyder A.Z.
        A default mode of brain function: a brief history of an evolving idea.
        Neuroimage. 2007; 37 ([discussion: 97–9]): 1083-1090
        • Logothetis N.K.
        What we can do and what we cannot do with fMRI.
        Nature. 2008; 453: 869-878
        • Villringer A.
        • Dirnagl U.
        Coupling of brain activity and cerebral blood-flow - basis of functional neuroimaging.
        Cerebrovas Brain Met. 1995; 7: 240-276
        • Attwell D.
        • Buchan A.M.
        • Charpak S.
        • et al.
        Glial and neuronal control of brain blood flow.
        Nature. 2010; 468: 232-243
        • Holodny A.I.
        • Schulder M.
        • Liu W.C.
        • et al.
        Decreased BOLD functional MR activation of the motor and sensory cortices adjacent to a glioblastoma multiforme: implications for image-guided neurosurgery.
        AJNR Am J Neuroradiol. 1999; 20: 609-612
        • Holodny A.I.
        • Schulder M.
        • Liu W.C.
        • et al.
        The effect of brain tumors on BOLD functional MR imaging activation in the adjacent motor cortex: implications for image-guided neurosurgery.
        AJNR Am J Neuroradiol. 2000; 21: 1415-1422
        • DeYoe E.A.
        • Ulmer J.L.
        • Mueller W.M.
        • et al.
        Imaging of the functional and dysfunctional visual system.
        Semin Ultrasound CT MR. 2015; 36: 234-248
        • Ulmer J.L.
        • Krouwer H.G.
        • Mueller W.M.
        • et al.
        Pseudo-reorganization of language cortical function at fMR imaging: a consequence of tumor-induced neurovascular uncoupling.
        Am J Neuroradiol. 2003; 24: 213-217
        • Agarwal S.
        • Sair H.I.
        • Yahyavi-Firouz-Abadi N.
        • et al.
        Neurovascular uncoupling in resting state fMRI demonstrated in patients with primary brain gliomas.
        J Magn Reson Imaging. 2016; 43: 620-626
        • Agarwal S.
        • Sair H.I.
        • Airan R.
        • et al.
        Demonstration of brain tumor-induced neurovascular uncoupling in resting-state fMRI at ultrahigh field.
        Brain Connect. 2016; 6: 267-272
        • Peck K.K.
        • Bradbury M.
        • Petrovich N.
        • et al.
        Presurgical evaluation of language using functional magnetic resonance imaging in brain tumor patients with previous surgery.
        Neurosurgery. 2009; 64: 644-652
        • Gupta A.
        • Shah A.
        • Young R.J.
        • et al.
        Imaging of brain tumors: functional magnetic resonance imaging and diffusion tensor imaging.
        Neuroimaging Clin N Am. 2010; 20: 379-400
        • Gabriel M.
        • Brennan N.P.
        • Peck K.K.
        • et al.
        Blood oxygen level dependent functional magnetic resonance imaging for presurgical planning.
        Neuroimaging Clin N Am. 2014; 24: 557-571
        • Del Ferraro G.
        • Moreno A.A.-O.X.
        • Min B.
        • et al.
        Finding influential nodes for integration in brain networks using optimal percolation theory.
        Nat Commun. 2018; 9: 2274
        • Sun H.
        • Vachha B.
        • Laino M.E.
        • et al.
        Decreased hand motor resting-state functional connectivity in patients with glioma: analysis of factors including neurovascular uncoupling.
        Radiology. 2020; 294: 610-621
        • Pillai J.J.
        The evolution of clinical functional imaging during the past 2 decades and its current impact on neurosurgical planning.
        AJNR Am J Neuroradiol. 2010; 31: 219-225
        • Petrella J.R.
        • Shah L.M.
        • Harris K.M.
        • et al.
        Preoperative functional MR imaging localization of language and motor areas: effect on therapeutic decision making in patients with potentially resectable brain tumors.
        Radiology. 2006; 240: 793-802
        • Pillai J.
        • Zaca D.
        • Choudhri A.
        Clinical impact of integrated physiologic brain tumor imaging.
        Technol Cancer Res Treat. 2010; 9: 359-380
        • Fox M.E.
        • King T.Z.
        Functional connectivity in adult brain tumor patients: a systematic review.
        Brain Connect. 2018; 8: 381-397
        • Holodny A.I.
        • Schulder M.
        • Ybasco A.
        • et al.
        Translocation of Broca's area to the contralateral hemisphere as the result of the growth of a left inferior frontal glioma.
        J Comput Assist Tomogr. 2002; 26: 941-943
        • Petrovich N.M.
        • Holodny A.I.
        • Brennan C.W.
        • et al.
        Isolated translocation of Wernicke's area to the right hemisphere in a 62-year-man with a temporo-parietal glioma.
        AJNR Am J Neuroradiol. 2004; 25: 130-133
        • Fisicaro R.A.
        • Jost E.
        • Shaw K.
        • et al.
        Cortical plasticity in the setting of brain tumors.
        Top Magn Reson Imaging. 2016; 25: 25-30
        • Cho N.S.
        • Peck K.K.
        • Zhang Z.
        • et al.
        Paradoxical activation in the cerebellum during language fMRI in patients with brain tumors: possible explanations based on neurovascular uncoupling and functional reorganization.
        Cerebellum. 2018; 17 (1473-4230 (Electronic)): 286-293
        • Li Q.
        • Dong J.W.
        • Del Ferraro G.
        • et al.
        Functional translocation of Broca's area in a low-grade left frontal glioma: graph theory reveals the novel, adaptive network connectivity.
        Front Neurol. 2019; 10: 1664-2295
        • Zaca D.
        • Jovicich J.
        • Nadar S.R.
        • et al.
        Cerebrovascular reactivity mapping in patients with low grade gliomas undergoing presurgical sensorimotor mapping with BOLD fMRI.
        J Magn Reson Imaging. 2014; 40: 383-390
        • Hou B.L.
        • Bradbury M.
        • Peck K.K.
        • et al.
        Effect of brain tumor neovasculature defined by rCBV on BOLD fMRI activation volume in the primary motor cortex.
        Neuroimage. 2006; 32: 489-497
        • Jiang Z.
        • Krainik A.
        • David O.
        • et al.
        Impaired fMRI activation in patients with primary brain tumors.
        Neuroimage. 2010; 52: 538-548
        • Fraga de Abreu V.H.
        • Peck K.K.
        • Petrovich-Brennan N.M.
        • et al.
        Brain tumors: the influence of tumor type and routine MR imaging characteristics at BOLD functional MR imaging in the primary motor gyrus.
        Radiology. 2016; 281 (1527-1315 (Electronic)): 876-883
        • Silva M.A.
        • See A.P.
        • Essayed W.I.
        • et al.
        Challenges and techniques for presurgical brain mapping with functional MRI.
        Neuroimage Clin. 2018; 17 (2213-1582 (Electronic)): 794-803
        • Venkat P.
        • Chopp M.
        • Chen J.
        New insights into coupling and uncoupling of cerebral blood flow and metabolism in the brain.
        Croat Med J. 2016; 57: 223-238
        • Lee J.
        • Lund-Smith C.
        • Borboa A.
        • et al.
        Glioma-induced remodeling of the neurovascular unit.
        Brain Res. 2009; 1288 (1872-6240 (Electronic)): 125-134
        • Pak R.W.
        • Hadjiabadi D.H.
        • Senarathna J.
        • et al.
        Implications of neurovascular uncoupling in functional magnetic resonance imaging (fMRI) of brain tumors.
        J Cereb Blood Flow Metab. 2017; 37: 3475-3487
        • Montgomery M.K.
        • Kim S.H.
        • Dovas A.
        • et al.
        Glioma-induced alterations in neuronal activity and neurovascular coupling during disease progression.
        Cell Rep. 2020; 31: 107500
        • Hosford P.S.
        • Christie I.N.
        • Niranjan A.
        • et al.
        A critical role for the ATP-sensitive potassium channel subunit K(IR)6.1 in the control of cerebral blood flow.
        J Cereb Blood Flow Metab. 2019; 39: 2089-2095
        • Pelligrino D.A.
        • Vetri F.
        • Xu H.L.
        Purinergic mechanisms in gliovascular coupling.
        Semin Cell Dev Biol. 2011; 22: 229-236
        • Watkins S.
        • Robel S.
        • Kimbrough I.F.
        • et al.
        Disruption of astrocyte-vascular coupling and the blood-brain barrier by invading glioma cells.
        Nat Commun. 2014; 5 (2041-1723 (Electronic)): 4196
        • Chaitanya G.V.
        • Minagar A.
        • Alexander J.S.
        Neuronal and astrocytic interactions modulate brain endothelial properties during metabolic stresses of in vitro cerebral ischemia.
        Cell Commun Signal. 2014; 12 (1478-811X (Electronic)): 7
        • Pillai J.J.
        • Mikulis D.J.
        Cerebrovascular reactivity mapping: an evolving standard for clinical functional imaging.
        AJNR Am J Neuroradiol. 2015; 36: 7-13
        • Davis T.L.
        • Kwong K.K.
        • Weisskoff R.M.
        • et al.
        Calibrated functional MRI: Mapping the dynamics of oxidative metabolism.
        Proc Natl Acad Sci U S A. 1998; 95: 1834-1839
        • Lythgoe D.J.
        • Williams S.C.R.
        • Cullinane M.
        • et al.
        Mapping of cerebrovascular reactivity using bold magnetic resonance imaging.
        Magn Reson Imaging. 1999; 17: 495-502
        • Fierstra J.
        • Sobczyk O.
        • Battisti-Charbonney A.
        • et al.
        Measuring cerebrovascular reactivity: what stimulus to use?.
        J Physiol. 2013; 591: 5809-5821
        • Brian Jr., J.E.
        Carbon dioxide and the cerebral circulation.
        Anesthesiology. 1998; 88: 1365-1386
        • Hoiland R.L.
        • Fisher J.A.
        • Ainslie P.N.
        Regulation of the cerebral circulation by arterial carbon dioxide.
        Compr Physiol. 2019; 9: 1101-1154
        • Vavilala M.S.
        • Lee L.A.
        • Lam A.M.
        Cerebral blood flow and vascular physiology.
        Anesthesiol Clin North Am. 2002; 20 (v): 247-264
        • Madden J.A.
        The effect of carbon dioxide on cerebral arteries.
        Pharmacol Ther. 1993; 59: 229-250
        • Kety S.S.
        • Schmidt C.F.
        The effects of altered arterial tensions of carbon dioxide and oxygen on cerebral blood flow and cerebral oxygen consumption of normal young men.
        J Clin Invest. 1948; 27: 484-492
        • Tancredi F.B.
        • Hoge R.D.
        Comparison of cerebral vascular reactivity measures obtained using breath-holding and CO2 inhalation.
        J Cereb Blood Flow Metab. 2013; 33: 1066-1074
        • Blockley N.P.
        • Harkin J.W.
        • Bulte D.P.
        Rapid cerebrovascular reactivity mapping: enabling vascular reactivity information to be routinely acquired.
        Neuroimage. 2017; 159 (1095-9572 (Electronic)): 214-223
        • Fisher J.A.
        The CO2 stimulus for cerebrovascular reactivity: fixing inspired concentrations vs. targeting end-tidal partial pressures.
        J Cereb Blood Flow Metab. 2016; 36: 1004-1011
        • Fisher J.A.
        • Iscoe S.
        • Duffin J.
        Sequential gas delivery provides precise control of alveolar gas exchange.
        Respir Physiol Neurobiol. 2016; 225 (1878-1519 (Electronic)): 60-69
        • Baddeley H.
        • Brodrick P.M.
        • Taylor N.J.
        • et al.
        Gas exchange parameters in radiotherapy patients during breathing of 2%, 3.5% and 5% carbogen gas mixtures.
        Br J Radiol. 2000; 73: 1100-1104
        • Wise R.G.
        • Pattinson K.T.
        • Bulte D.P.
        • et al.
        Dynamic forcing of end-tidal carbon dioxide and oxygen applied to functional magnetic resonance imaging.
        J Cereb Blood Flow Metab. 2007; 27: 1521-1532
        • Poublanc J.
        • Crawley A.P.
        • Sobczyk O.
        • et al.
        Measuring cerebrovascular reactivity: the dynamic response to a step hypercapnic stimulus.
        J Cereb Blood Flow Metab. 2015; 35: 1746-1756
        • Slessarev M.
        • Han J.
        • Mardimae A.
        • et al.
        Prospective targeting and control of end-tidal CO2 and O2 concentrations.
        J Physiol. 2007; 581: 1207-1219
        • Fisher J.A.
        • Sobczyk O.
        • Crawley A.
        • et al.
        Assessing cerebrovascular reactivity by the pattern of response to progressive hypercapnia.
        Hum Brain Mapp. 2017; 38: 3415-3427
        • Lu H.
        • Liu P.
        • Yezhuvath U.
        • et al.
        MRI mapping of cerebrovascular reactivity via gas inhalation challenges.
        J Vis Exp. 2014; 94: 52306
        • Tancredi F.B.
        • Lajoie I.
        • Hoge R.D.
        A simple breathing circuit allowing precise control of inspiratory gases for experimental respiratory manipulations.
        BMC Res Notes. 2014; 7 (1756-0500 (Electronic)): 235
        • Prisman E.
        • Slessarev M.
        • Azami T.
        • et al.
        Modified oxygen mask to induce target levels of hyperoxia and hypercarbia during radiotherapy: a more effective alternative to carbogen.
        Int J Radiat Biol. 2007; 83: 457-462
        • Duffin J.
        Measuring the respiratory chemoreflexes in humans.
        Respir Physiol Neurobiol. 2011; 177: 71-79
        • Mark C.I.
        • Slessarev M.
        • Ito S.
        • et al.
        Precise control of end-tidal carbon dioxide and oxygen improves BOLD and ASL cerebrovascular reactivity measures.
        Magn Reson Med. 2010; 64: 749-756
        • Liu P.
        • De Vis J.B.
        • Lu H.
        Cerebrovascular reactivity (CVR) MRI with CO2 challenge: A technical review.
        Neuroimage. 2019; 187 (1095-9572 (Electronic)): 104-115
        • Murphy K.
        • Harris A.D.
        • Wise R.G.
        Robustly measuring vascular reactivity differences with breath-hold: normalising stimulus-evoked and resting state BOLD fMRI data.
        Neuroimage. 2011; 54: 369-379
        • Bright M.G.
        • Murphy K.
        Reliable quantification of BOLD fMRI cerebrovascular reactivity despite poor breath-hold performance.
        Neuroimage. 2013; 83 (1095-9572 (Electronic)): 559-568
        • Pillai J.J.
        • Zaca D.
        Clinical utility of cerebrovascular reactivity mapping in patients with low grade gliomas.
        World J Clin Oncol. 2011; 2: 397-403
        • Pillai J.J.
        • Zaca D.
        Comparison of BOLD cerebrovascular reactivity mapping and DSC MR perfusion imaging for prediction of neurovascular uncoupling potential in brain tumors.
        Technol Cancer Res Treat. 2012; 11: 361-374
        • Cohen A.D.
        • Wang Y.
        Improving the assessment of breath-holding induced cerebral vascular reactivity using a multiband multi-echo ASL/BOLD sequence.
        Sci Rep. 2019; 9: 5079
        • Thomason M.E.
        • Glover G.H.
        Controlled inspiration depth reduces variance in breath-holding-induced BOLD signal.
        Neuroimage. 2008; 39: 206-214
        • Kastrup A.
        • Kruger G.
        • Neumann-Haefelin T.
        • et al.
        Assessment of cerebrovascular reactivity with functional magnetic resonance imaging: comparison of CO(2) and breath holding.
        Magn Reson Imaging. 2001; 19: 13-20
        • Blockley N.P.
        • Griffeth V.E.
        • Buxton R.B.
        A general analysis of calibrated BOLD methodology for measuring CMRO2 responses: comparison of a new approach with existing methods.
        Neuroimage. 2012; 60: 279-289
        • Kastrup A.
        • Kruger G.
        • Glover G.H.
        • et al.
        Regional variability of cerebral blood oxygenation response to hypercapnia.
        Neuroimage. 1999; 10: 675-681
        • Ratnatunga C.
        • Adiseshiah M.
        Increase in middle cerebral artery velocity on breath holding: a simplified test of cerebral perfusion reserve.
        Eur J Vasc Surg. 1990; 4: 519-523
        • Zhou Y.
        • Rodgers Z.B.
        • Kuo A.H.
        Cerebrovascular reactivity measured with arterial spin labeling and blood oxygen level dependent techniques.
        Magn Reson Imaging. 2015; 33: 566-576
        • Iranmahboob A.
        • Peck K.K.
        • Brennan N.P.
        • et al.
        Vascular reactivity maps in patients with gliomas using breath-holding BOLD fMRI.
        Neuroimaging. 2016; 26 (1552-6569 (Electronic)): 232-239
        • Peng S.L.
        • Yang H.C.
        • Chen C.M.
        • et al.
        Short- and long-term reproducibility of BOLD signal change induced by breath-holding at 1.5 and 3 T.
        Nmr Biomed. 2020; 33: e4195
        • Muscas G.
        • van Niftrik C.H.B.
        • Sebok M.
        • et al.
        Hemodynamic investigation of peritumoral impaired blood oxygenation-level dependent cerebrovascular reactivity in patients with diffuse glioma.
        Magn Reson Imaging. 2020; 70 (1873-5894 (Electronic)): 50-56
        • Scouten A.
        • Schwarzbauer C.
        Paced respiration with end-expiration technique offers superior BOLD signal repeatability for breath-hold studies.
        Neuroimage. 2008; 43: 250-257
        • Sage M.R.
        • Wilson A.J.
        The blood-brain barrier: an important concept in neuroimaging.
        AJNR Am J Neuroradiol. 1994; 15: 601-622
        • Vaupel P.
        • Kallinowski F.
        • Okunieff P.
        Blood flow, oxygen and nutrient supply, and metabolic microenvironment of human tumors: a review.
        Cancer Res. 1989; 49: 6449-6465
        • Zaca D.
        • Hua J.
        • Pillai J.J.
        Cerebrovascular reactivity mapping for brain tumor presurgical planning.
        World J Clin Oncol. 2011; 2: 289-298
        • Hsu Y.Y.
        • Chang C.N.
        • Jung S.M.
        • et al.
        Blood oxygenation level-dependent MRI of cerebral gliomas during breath holding.
        J Magn Reson Imaging. 2004; 19: 160-167
        • Thomason M.E.
        • Burrows B.E.
        • Gabrieli J.D.
        • et al.
        Breath holding reveals differences in fMRI BOLD signal in children and adults.
        Neuroimage. 2005; 25: 824-837
        • Magon S.
        • Basso G.
        • Farace P.
        • et al.
        Reproducibility of BOLD signal change induced by breath holding.
        Neuroimage. 2009; 45: 702-712
        • Parkes M.J.
        Breath-holding and its breakpoint.
        Exp Physiol. 2006; 91: 1-15
        • Moreton F.C.
        • Dani K.A.
        • Goutcher C.
        • et al.
        Respiratory challenge MRI: practical aspects.
        Neuroimage Clin. 2016; 11 (2213-1582 (Electronic)): 667-677
        • Li T.Q.
        • Kastrup A.
        • Takahashi A.M.
        • et al.
        Functional MRI of human brain during breath holding by BOLD and FAIR techniques.
        Neuroimage. 1999; 9: 243-249
        • Kastrup A.
        • Li T.Q.
        • Glover G.H.
        • et al.
        Cerebral blood flow-related signal changes during breath-holding.
        AJNR Am J Neuroradiol. 1999; 20: 1233-1238
        • Bright M.G.
        • Bulte D.P.
        • Jezzard P.
        • et al.
        Characterization of regional heterogeneity in cerebrovascular reactivity dynamics using novel hypocapnia task and BOLD fMRI.
        Neuroimage. 2009; 48: 166-175
        • van Niftrik C.H.
        • Piccirelli M.
        • Bozinov O.
        • et al.
        Fine tuning breath-hold-based cerebrovascular reactivity analysis models.
        Brain Behav. 2016; 6: e00426
        • Birn R.M.
        • Smith M.A.
        • Jones T.B.
        • et al.
        The respiration response function: the temporal dynamics of fMRI signal fluctuations related to changes in respiration.
        Neuroimage. 2008; 40: 644-654
        • Kannurpatti S.S.
        • Biswal B.B.
        Detection and scaling of task-induced fMRI-BOLD response using resting state fluctuations.
        Neuroimage. 2008; 40: 1567-1574
        • Kannurpatti S.S.
        • Motes M.A.
        • Biswal B.B.
        • et al.
        Assessment of unconstrained cerebrovascular reactivity marker for large age-range FMRI studies.
        PLoS One. 2014; 9: e88751
        • Kannurpatti S.S.
        • Motes M.A.
        • Rypma B.
        • et al.
        Increasing measurement accuracy of age-related BOLD signal change: minimizing vascular contributions by resting-state-fluctuation-of-amplitude scaling.
        Hum Brain Mapp. 2011; 32: 1125-1140
        • Wise R.G.
        • Ide K.
        • Poulin M.J.
        • et al.
        Resting fluctuations in arterial carbon dioxide induce significant low frequency variations in BOLD signal.
        Neuroimage. 2004; 21: 1652-1664
        • Liu P.Y.
        • Li Y.
        • Pinho M.
        • et al.
        Cerebrovascular reactivity mapping without gas challenges.
        Neuroimage. 2017; 146 (1095-9572 (Electronic)): 320-326
        • Ghinda D.C.
        • Wu J.S.
        • Duncan N.W.
        • et al.
        How much is enough—can resting state fMRI provide a demarcation for neurosurgical resection in glioma?.
        Neurosci Biobehav Rev. 2018; 84 (1873-7528 (Electronic)): 245-261
        • Zaca D.
        • Corsini F.
        • Rozzanigo U.
        • et al.
        Whole-brain network connectivity underlying the human speech articulation as emerged integrating direct electric stimulation, resting state fMRI and tractography.
        Front Hum Neurosci. 2018; 12 (1662-5161 (Print)): 405
        • Qiu T.M.
        • Gong F.Y.
        • Gong X.
        • et al.
        Real-time motor cortex mapping for the safe resection of glioma: an intraoperative resting-state fMRI study.
        AJNR Am J Neuroradiol. 2017; 38: 2146-2152
        • Zaca D.
        • Jovicich J.
        • Corsini F.
        • et al.
        ReStNeuMap: a tool for automatic extraction of resting-state functional MRI networks in neurosurgical practice.
        J Neurosurg. 2018; 131: 764-771
        • Yahyavi-Firouz-Abadi N.
        • Pillai J.J.
        • Lindquist M.A.
        • et al.
        Presurgical brain mapping of the ventral somatomotor network in patients with brain tumors using resting-state fMRI.
        Am J Neuroradiol. 2017; 38: 1006-1012
        • Wongsripuemtet J.
        • Tyan A.E.
        • Carass A.
        • et al.
        Preoperative mapping of the supplementary motor area in patients with brain tumor using resting-state fMRI with seed-based analysis.
        Am J Neuroradiol. 2018; 39: 1493-1498
        • Voets N.
        • Plaha P.
        • Parker Jones O.
        • et al.
        Presurgical localization of the primary sensorimotor cortex in gliomas : when is resting state FMRI beneficial and sufficient?.
        Clin Neuroradiol. 2020; https://doi.org/10.1007/s00062-020-00879-1
        • Dierker D.
        • Roland J.L.
        • Kamran M.
        • et al.
        Resting-state functional magnetic resonance imaging in presurgical functional mapping: sensorimotor localization.
        Neuroimaging Clin N Am. 2017; 27: 621-633
        • Vakamudi K.
        • Posse S.
        • Jung R.
        • et al.
        Real-time presurgical resting-state fMRI in patients with brain tumors: Quality control and comparison with task-fMRI and intraoperative mapping.
        Hum Brain Mapp. 2020; 41: 797-814
        • Shimony J.S.
        • Zhang D.Y.
        • Johnston J.M.
        • et al.
        Resting-state spontaneous fluctuations in brain activity: a new paradigm for presurgical planning using fMRI.
        Acad Radiol. 2009; 16: 578-583
        • Schneider F.C.
        • Pailler M.
        • Faillenot I.
        • et al.
        Presurgical assessment of the sensorimotor cortex using resting-state fMRI.
        Am J Neuroradiol. 2016; 37: 101-107
        • Sair H.I.
        • Yahyavi-Firouz-Abadi N.
        • Calhoun V.D.
        • et al.
        Presurgical brain mapping of the language network in patients with brain tumors using resting-state fMRI: Comparison with task fMRI.
        Hum Brain Mapp. 2016; 37: 913-923
        • Liu H.S.
        • Buckner R.L.
        • Talukdar T.
        • et al.
        Task-free presurgical mapping using functional magnetic resonance imaging intrinsic activity Laboratory investigation.
        J Neurosurg. 2009; 111: 746-754
        • Agarwal S.
        • Lu H.
        • Pillai J.J.
        Value of frequency domain resting-state functional magnetic resonance imaging metrics amplitude of low-frequency fluctuation and fractional amplitude of low-frequency fluctuation in the assessment of brain tumor-induced neurovascular uncoupling.
        Brain Connect. 2017; 7: 382-389
        • Agarwal S.
        • Sair H.I.
        • Gujar S.
        • et al.
        Functional magnetic resonance imaging activation optimization in the setting of brain tumor-induced neurovascular uncoupling using resting-state blood oxygen level-dependent amplitude of low frequency fluctuations.
        Brain Connect. 2019; 9: 241-250
        • Agarwal S.
        • Sair H.I.
        • Pillai J.J.
        The resting-state functional magnetic resonance imaging regional homogeneity metrics-Kendall's coefficient of concordance-regional homogeneity and coherence-regional homogeneity-are valid indicators of tumor-related neurovascular uncoupling.
        Brain Connect. 2017; 7: 228-235
        • Metwali H.
        • Raemaekers M.
        • Ibrahim T.
        • et al.
        Inter-network functional connectivity changes in patients with brain tumors: a resting-state functional magnetic resonance imaging study.
        World Neurosurg. 2020; 138 (1878-8769 (Electronic)): e66-e71
        • Liouta E.
        • Katsaros V.K.
        • Stranjalis G.
        • et al.
        Motor and language deficits correlate with resting state functional magnetic resonance imaging networks in patients with brain tumors.
        J Neuroradiol. 2019; 46: 199-206
        • Mallela A.N.
        • Peck K.K.
        • Petrovich-Brennan N.M.
        • et al.
        Altered resting-state functional connectivity in the hand motor network in glioma patients.
        Brain Connect. 2016; 6: 587-595
        • Hadjiabadi D.H.
        • Pung L.
        • Zhang J.
        • et al.
        Brain tumors disrupt the resting-state connectome.
        Neuroimage Clin. 2018; 18 (2213-1582 (Electronic)): 279-289
        • Lee M.H.
        • Miller-Thomas M.M.
        • Benzinger T.L.
        • et al.
        Clinical resting-state fMRI in the preoperative setting: are we ready for prime time?.
        Top Magn Reson Imaging. 2016; 25 (1536-1004 (Electronic)): 11-18
        • Zhang D.Y.
        • Johnston J.M.
        • Fox M.D.
        • et al.
        Preoperative sensorimotor mapping in brain tumor patients using spontaneous fluctuations in neuronal activity imaged with functional magnetic resonance imaging: initial experience.
        Neurosurgery. 2009; 65: 226-236
        • Kokkonen S.M.
        • Nikkinen J.
        • Remes J.
        • et al.
        Preoperative localization of the sensorimotor area using independent component analysis of resting-state fMRI.
        Magn Reson Imaging. 2009; 27: 733-740
        • Mitchell T.J.
        • Hacker C.D.
        • Breshears J.D.
        • et al.
        A novel data-driven approach to preoperative mapping of functional cortex using resting-state functional magnetic resonance imaging.
        Neurosurgery. 2013; 73: 969-982
        • Sair H.I.
        • Agarwal S.
        • Pillai J.J.
        Application of resting state functional MR imaging to presurgical mapping: language mapping.
        Neuroimaging Clin N Am. 2017; 27: 635-644
        • Agarwal S.
        • Sair H.I.
        • Pillai J.J.
        Limitations of resting-state functional MR imaging in the setting of focal brain lesions.
        Neuroimaging Clin N Am. 2017; 27: 645-661
        • Waheed S.H.
        • Mirbagheri S.
        • Agarwal S.
        • et al.
        Reporting of resting-state functional magnetic resonance imaging preprocessing methodologies.
        Brain Connect. 2016; 6: 663-668
        • Fox M.D.
        • Corbetta M.
        • Snyder A.Z.
        • et al.
        Spontaneous neuronal activity distinguishes human dorsal and ventral attention systems.
        Proc Natl Acad Sci U S A. 2006; 103: 10046-10051
        • Vincent J.L.
        • Kahn I.
        • Snyder A.Z.
        • et al.
        Evidence for a frontoparietal control system revealed by intrinsic functional connectivity.
        J Neurophysiol. 2008; 100: 3328-3342
        • Beckmann C.F.
        • DeLuca M.
        • Devlin J.T.
        • et al.
        Investigations into resting-state connectivity using independent component analysis.
        Philos Trans R Soc Lond B Biol Sci. 2005; 360: 1001-1013
        • Damoiseaux J.S.
        • Rombouts S.A.
        • Barkhof F.
        • et al.
        Consistent resting-state networks across healthy subjects.
        Proc Natl Acad Sci U S A. 2006; 103: 13848-13853
        • Lemee J.M.
        • Berro D.H.
        • Bernard F.
        • et al.
        Resting-state functional magnetic resonance imaging versus task-based activity for language mapping and correlation with perioperative cortical mapping.
        Brain Behav. 2019; 9: e01362
        • Bathla G.
        • Gene M.N.
        • Peck K.K.
        • et al.
        Resting state functional connectivity of the supplementary motor area to motor and language networks in patients with brain tumors.
        J Neuroimaging. 2019; 29: 521-526
        • Zang Y.F.
        • Jiang T.Z.
        • Lu Y.L.
        • et al.
        Regional homogeneity approach to fMRI data analysis.
        Neuroimage. 2004; 22: 394-400
        • Zang Y.F.
        • He Y.
        • Zhu C.Z.
        • et al.
        Altered baseline brain activity in children with ADHD revealed by resting-state functional MRI.
        Brain Dev. 2007; 29: 83-91
        • Biswal B.B.
        • Kannurpatti S.S.
        • Rypma B.
        Hemodynamic scaling of fMRI-BOLD signal: validation of low-frequency spectral amplitude as a scalability factor.
        Magn Reson Imaging. 2007; 25: 1358-1369
        • Pronin I.N.
        • Batalov A.I.
        • Zakharova N.E.
        • et al.
        Evaluation of vascular reactivity to overcome limitations of neurovascular uncoupling in BOLD fMRI of malignant brain tumors.
        Zh Vopr Neirokhir Im N N Burdenko. 2018; 82 ([in Russian]): 21-29
        • Voss H.U.
        • Peck K.K.
        • Petrovich Brennan N.M.
        • et al.
        A vascular-task response dependency and its application in functional imaging of brain tumors.
        J Neurosci Methods. 2019; 322: 10-22https://doi.org/10.1016/j.jneumeth.2019.04.004