Dynamic Brain Connectivity in Resting State Functional MR Imaging

  • Rozita Jalilianhasanpour
    Affiliations
    Division of Neuroradiology, The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Baltimore, MD 21287, USA
    Search for articles by this author
  • Daniel Ryan
    Affiliations
    Division of Neuroradiology, The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Baltimore, MD 21287, USA
    Search for articles by this author
  • Shruti Agarwal
    Affiliations
    Division of Neuroradiology, The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Baltimore, MD 21287, USA
    Search for articles by this author
  • Elham Beheshtian
    Affiliations
    Division of Neuroradiology, The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Baltimore, MD 21287, USA
    Search for articles by this author
  • Sachin K. Gujar
    Affiliations
    Division of Neuroradiology, The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Baltimore, MD 21287, USA
    Search for articles by this author
  • Jay J. Pillai
    Affiliations
    Division of Neuroradiology, The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Baltimore, MD 21287, USA

    Department of Neurosurgery, Johns Hopkins University School of Medicine, 1800 Orleans Street, Baltimore, MD 21287, USA
    Search for articles by this author
  • Haris I. Sair
    Correspondence
    Corresponding author. Division of Neuroradiology, The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Baltimore, MD 21287.
    Affiliations
    Division of Neuroradiology, The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Baltimore, MD 21287, USA

    The Malone Center for Engineering in Healthcare, The Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA
    Search for articles by this author
Published:October 31, 2020DOI:https://doi.org/10.1016/j.nic.2020.09.004

      Keywords

      To read this article in full you will need to make a payment
      Purchase one-time access
      Subscribers receive full online access to your subscription and archive of back issues up to and including 2002.
      Content published before 2002 is available via pay-per-view purchase only.
      Subscribe to Neuroimaging Clinics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Biswal B.
        • Yetkin F.Z.
        • Haughton V.M.
        • et al.
        Functional connectivity in the motor cortex of resting human brain using echo-planar MRI.
        Magn Reson Med. 1995; 34: 537-541
        • Damoiseaux J.S.
        • Rombouts S.A.R.B.
        • Barkhof F.
        • et al.
        Consistent resting-state networks across healthy subjects.
        Proc Natl Acad Sci U S A. 2006; 103: 13848-13853
        • Greicius Michael D.
        • Ben K.
        • Reiss Allan L.
        • et al.
        Functional connectivity in the resting brain: a network analysis of the default mode hypothesis.
        Proc Natl Acad Sci U S A. 2003; 100: 253-258
        • Beckmann Christian F.
        • Marilena D.
        • Devlin Joseph T.
        • et al.
        Investigations into resting-state connectivity using independent component analysis.
        Philos Trans R Soc Lond B Biol Sci. 2005; 360: 1001-1013
        • Raymond S.
        • John S.
        • Christian S.
        • et al.
        Undirected graphs of frequency-dependent functional connectivity in whole brain networks.
        Philos Trans R Soc Lond B Biol Sci. 2005; 360: 937-946
        • Aviv M.
        • Yossi Y.
        • Pasternak O.
        • et al.
        Cluster analysis of resting-state fMRI time series.
        Neuroimage. 2009; 45: 1117-1125
        • Du Y.
        • Pearlson Godfrey D.
        • Yu Q.
        • et al.
        Interaction among subsystems within default mode network diminished in schizophrenia patients: a dynamic connectivity approach.
        Schizophr Res. 2016; 170: 55-65
        • Barnaly R.
        • Eswar D.
        • Pearlson Godfrey D.
        • et al.
        Dynamic connectivity states estimated from resting fMRI Identify differences among Schizophrenia, bipolar disorder, and healthy control subjects.
        Front Hum Neurosci. 2014; 8: 897
        • Price T.
        • Chong-Yaw W.
        • Gao W.
        • et al.
        Multiple-network classification of childhood autism using functional connectivity dynamics.
        Med Image Comput Comput Assist Interv. 2014; 17: 177-184
        • Chong-Yaw W.
        • Yang S.
        • Pew-Thian Y.
        • et al.
        Sparse temporally dynamic resting-state functional connectivity networks for early MCI identification.
        Brain Imaging Behav. 2016; 10: 342-356
        • Chen X.
        • Zhang H.
        • Gao Y.
        • et al.
        High-order resting-state functional connectivity network for MCI classification.
        Hum Brain Mapp. 2016; 37: 3282-3296
        • Marion S.
        • Laurent T.
        • Daniel R.
        • et al.
        Identifying dynamic functional connectivity changes in dementia with Lewy bodies based on product hidden Markov models.
        Front Comput Neurosci. 2016; 10: 60
        • Nora L.
        • Jonas R.
        • Markus G.
        • et al.
        Principal components of functional connectivity: a new approach to study dynamic brain connectivity during rest.
        Neuroimage. 2013; 83: 937-950
        • Kaiser Roselinde H.
        • Whitfield-Gabrieli S.
        • Dillon Daniel G.
        • et al.
        Dynamic resting-state functional connectivity in major depression.
        Neuropsychopharmacology. 2016; 41: 1822-1830
        • Chang C.
        • Glover Gary H.
        Time-frequency dynamics of resting-state brain connectivity measured with fMRI.
        Neuroimage. 2010; 50: 81-98
        • Preti Maria G.
        • Bolton Thomas Aw
        • Van De Ville D.
        The dynamic functional connectome: state-of-the-art and perspectives.
        Neuroimage. 2017; 160: 41-54
        • Lurie Daniel J.
        • Daniel K.
        • Bassett Danielle S.
        • et al.
        Questions and controversies in the study of time-varying functional connectivity in resting fMRI.
        Netw Neurosci. 2020; 4: 30-69
        • Kalina C.
        • Irving Zachary C.
        • Fox Kieran C.R.
        • et al.
        Mind-wandering as spontaneous thought: a dynamic framework.
        Nat Rev Neurosci. 2016; 17: 718-731
        • De Luca M.
        • Beckmann C.F.
        • De Stefano N.
        • et al.
        fMRI resting state networks define distinct modes of long-distance interactions in the human brain.
        Neuroimage. 2006; 29: 1359-1367
        • Zarrar S.
        • Clare K.A.M.
        • Reiss Philip T.
        • et al.
        The resting brain: unconstrained yet reliable.
        Cereb Cortex. 2009; 19: 2209-2229
        • Uddin Lucina Q.
        • Clare Kelly A.M.
        • Biswal Bharat B.
        • et al.
        Functional connectivity of default mode network components: correlation, anticorrelation, and causality.
        Hum Brain Mapp. 2009; 30: 625-637
        • Vatansever D.
        • Menon D.K.
        • Manktelow A.E.
        • et al.
        Default mode network connectivity during task execution.
        Neuroimage. 2015; 122: 96-104
        • Enzo T.
        • von Wegner F.
        • Astrid M.
        • et al.
        Dynamic BOLD functional connectivity in humans and its electrophysiological correlates.
        Front Hum Neurosci. 2012; 6: 339
        • Allen Elena A.
        • Eswar D.
        • Plis Sergey M.
        • et al.
        Tracking whole-brain connectivity dynamics in the resting state.
        Cereb Cortex. 2014; 24: 663-676
        • Pablo B.
        • Lynn U.
        • Sitt Jacobo D.
        • et al.
        Signature of consciousness in the dynamics of resting-state brain activity.
        Proc Natl Acad Sci U S A. 2015; 112: 887-892
        • Erhardt Erik B.
        • Srinivas R.
        • Bedrick Edward J.
        • et al.
        Comparison of multi-subject ICA methods for analysis of fMRI data.
        Hum Brain Mapp. 2011; 32: 2075-2095
        • Vesa K.
        • Tapani V.
        • Jukka R.
        • et al.
        A sliding time-window ICA reveals spatial variability of the default mode network in time.
        Brain Connect. 2011; 1: 339-347
        • Airan Raag D.
        • Vogelstein Joshua T.
        • Pillai Jay J.
        • et al.
        Factors affecting characterization and localization of interindividual differences in functional connectivity using MRI.
        Hum Brain Mapp. 2016; 37: 1986-1997
        • Matthew H.R.
        • Thilo W.
        • Allen Elena A.
        • et al.
        Dynamic functional connectivity: promise, issues, and interpretations.
        Neuroimage. 2013; 80: 360-378
        • Johnson Matthew W.
        • Albert G.-R.
        • Cosimano Mary P.
        • et al.
        Pilot study of the 5-HT2AR agonist psilocybin in the treatment of tobacco addiction.
        J Psychopharmacol. 2014; 28: 983-992
        • Johnson Matthew W.
        • Albert G.-R.
        • Griffiths Roland R.
        Long-term follow-up of psilocybin-facilitated smoking cessation.
        Am J Drug Alcohol Abuse. 2017; 43: 55-60
        • Ross S.
        • Anthony B.
        • Jeffrey G.
        • et al.
        Rapid and sustained symptom reduction following psilocybin treatment for anxiety and depression in patients with life-threatening cancer: a randomized controlled trial.
        J Psychopharmacol. 2016; 30: 1165-1180
        • Carhart-Harris Robin L.
        • Mark B.
        • James R.
        • et al.
        Psilocybin with psychological support for treatment-resistant depression: an open-label feasibility study.
        Lancet Psychiatry. 2016; 3: 619-627
        • Enzo T.
        • Robin C.-H.
        • Robert L.
        • et al.
        Enhanced repertoire of brain dynamical states during the psychedelic experience.
        Hum Brain Mapp. 2014; 35: 5442-5456
        • Madhyastha Tara M.
        • Askren Mary K.
        • Peter B.
        • et al.
        Dynamic connectivity at rest predicts attention task performance.
        Brain Connect. 2015; 5: 45-59
        • Aaron K.
        • Arielle T.
        • Sepideh S.
        • et al.
        Spontaneous cognitive processes and the behavioral validation of time-varying brain connectivity.
        Netw Neurosci. 2018; 2: 397-417
        • Khambhati Ankit N.
        • Sizemore A.E.
        • Betzel Richard F.
        • et al.
        Modeling and interpreting mesoscale network dynamics.
        Neuroimage. 2018; 180: 337-349
      1. Murphy AC, Gu S, Khambhati AN, et al. Explicitly Linking Regional Activation and Function Connectivity: Community Structure of Weighted Networks with Continuous Annotation arXiv:1611.07962.

        • Braun U.
        • Axel S.
        • Bassett Danielle S.
        • et al.
        Dynamic brain network reconfiguration as a potential schizophrenia genetic risk mechanism modulated by NMDA receptor function.
        Proc Natl Acad Sci U S A. 2016; 113: 12568-12573
        • Coyle J.T.
        NMDA receptor and schizophrenia: a brief history.
        Schizophr Bull. 2012; 38: 920-926
        • Nora L.
        • Van De Ville D.
        On spurious and real fluctuations of dynamic functional connectivity during rest.
        Neuroimage. 2015; 104: 430-436
        • Andrew Z.
        • Breakspear M.
        Towards a statistical test for functional connectivity dynamics.
        Neuroimage. 2015; 114: 466-470
        • Chu Catherine J.
        • Kramer M.A.
        • Jay P.
        • et al.
        Emergence of stable functional networks in long-term human electroencephalography.
        J Neurosci. 2012; 32: 2703-2713
        • Jones David T.
        • Prashanthi V.
        • Murphy Matthew C.
        • et al.
        Non-stationarity in the “resting brain’s” modular architecture.
        PLoS One. 2012; 7: e39731
        • Telesford Qawi K.
        • Mary-Ellen L.
        • Jean V.
        • et al.
        Detection of functional brain network reconfiguration during task-driven cognitive states.
        Neuroimage. 2016; 142: 198-210
        • Maziar Y.
        • Allen Elena A.
        • Miller Robyn L.
        • et al.
        Dynamic coherence analysis of resting fMRI data to jointly capture state-based phase, frequency, and time-domain information.
        Neuroimage. 2015; 120: 133-142
        • Jia H.
        • Hu X.
        • Gopikrishna D.
        Behavioral relevance of the dynamics of the functional brain connectome.
        Brain Connect. 2014; 4: 741-759
        • Waqas M.
        • Matthew M.
        • Wendy H.
        • et al.
        Spatiotemporal dynamics of low frequency BOLD fluctuations in rats and humans.
        Neuroimage. 2011; 54: 1140-1150
        • Belloy Michaël E.
        • Maarten N.
        • Anzar A.
        • et al.
        Dynamic resting state fMRI analysis in mice reveals a set of Quasi-Periodic Patterns and illustrates their relationship with the global signal.
        Neuroimage. 2018; 180: 463-484
        • Thompson G.J.
        • Pan W.-J.
        • Matthew Evan M.
        • et al.
        Quasi-periodic patterns (QPP): large-scale dynamics in resting state fMRI that correlate with local infraslow electrical activity.
        Neuroimage. 2014; 84: 1018-1031
        • Anzar A.
        • Michaël B.
        • Amrit K.
        • et al.
        Quasi-periodic patterns contribute to functional connectivity in the brain.
        Neuroimage. 2019; 191: 193-204
        • Grooms Joshua K.
        • Thompson Garth J.
        • Pan W.-J.
        • et al.
        Infraslow electroencephalographic and dynamic resting state network activity.
        Brain Connect. 2017; 7: 265-280
        • Lindquist Martin A.
        • Xu Y.
        • Nebel Mary B.
        • et al.
        Evaluating dynamic bivariate correlations in resting-state fMRI: a comparison study and a new approach.
        Neuroimage. 2014; 101: 531-546
        • Sadia S.
        • Chin-Hui L.
        • Keilholz Shella D.
        Evaluation of sliding window correlation performance for characterizing dynamic functional connectivity and brain states.
        Neuroimage. 2016; 133: 111-128
        • Choe Ann S.
        • Nebel Mary B.
        • Barber Anita D.
        • et al.
        Comparing test-retest reliability of dynamic functional connectivity methods.
        Neuroimage. 2017; 158: 155-175
        • Roland Jarod L.
        • Hacker Carl D.
        • Snyder Abraham Z.
        • et al.
        A comparison of resting state functional magnetic resonance imaging to invasive electrocortical stimulation for sensorimotor mapping in pediatric patients.
        Neuroimage Clin. 2019; 23: 101850
        • Leuthardt Eric C.
        • Gloria G.
        • Bandt S.K.
        • et al.
        Integration of resting state functional MRI into clinical practice - A large single institution experience.
        PLoS One. 2018; 13: e0198349
        • Dierker D.
        • Roland Jarod L.
        • Mudassar K.
        • et al.
        Resting-state functional magnetic resonance imaging in presurgical functional mapping.
        Neuroimaging Clin N Am. 2017; 27: 621-633
        • Hacker Carl D.
        • Roland Jarod L.
        • Kim Albert H.
        • et al.
        Resting-state network mapping in neurosurgical practice: a review.
        Neurosurg Focus. 2019; 47: E15
        • O’Connor Erin E.
        • Zeffiro Thomas A.
        Why is clinical fMRI in a resting state?.
        Front Neurol. 2019; 10https://doi.org/10.3389/fneur.2019.00420
        • Agarwal S.
        • Sair Haris I.
        • Raag A.
        • et al.
        Demonstration of brain tumor-induced neurovascular uncoupling in resting-state fMRI at ultrahigh field.
        Brain Connect. 2016; 6: 267-272
        • Chen C.
        • Hou B.L.
        • Holodny A.I.
        Effect of Age and Tumor Grade on BOLD fMRI in Preoperative Assessment of Glioma Patients.
        Radiology. 2008; 248: 971-978
        • Abreu V.H.F.
        • Peck K.K.
        • Petrovich-Brennan N.M.
        • et al.
        The influence of tumor pathology and routine MRI Characteristics on BOLD fMRI in the primary motor gyrus in patients with brain tumors.
        Radiology. 2016; 281: 876-883
        • Sun H.
        • Vachha B.
        • Laino M.E.
        • et al.
        Decreased hand-motor resting-state functional connectivity in patients with glioma: analysis of factors including neurovascular uncoupling.
        Radiology. 2020; 294: 610-621
        • Sair Haris I.
        • Yahyavi-Firouz-Abadi N.
        • Calhoun Vince D.
        • et al.
        Presurgical brain mapping of the language network in patients with brain tumors using resting-state fMRI: comparison with task fMRI.
        Hum Brain Mapp. 2016; 37: 913-923
        • Yahyavi-Firouz-Abadi N.
        • Pillai J.J.
        • Lindquist M.A.
        • et al.
        Presurgical brain mapping of the ventral somatomotor network in patients with brain tumors using resting-state fMRI.
        AJNR Am J Neuroradiol. 2017; 38: 1006-1012
        • Wongsripuemtet J.
        • Tyan A.E.
        • Carass A.
        • et al.
        Preoperative mapping of the supplementary motor area in patients with brain tumor using resting-state fMRI with seed-based analysis.
        Am J Neuroradiol. 2018; https://doi.org/10.3174/ajnr.A5709
        • Syed M.F.
        • Lindquist Martin A.
        • Pillai Jay J.
        • et al.
        Dynamic functional connectivity states between the dorsal and ventral sensorimotor networks revealed by dynamic conditional correlation analysis of resting-state functional magnetic resonance imaging.
        Brain Connect. 2017; 7: 635-642