Acute Ischemic Stroke

MR Imaging–Based Paradigms
  • Kambiz Nael
    Correspondence
    Corresponding author.
    Affiliations
    Department of Radiological Sciences, David Geffen School of Medicine at University of California Los Angeles, 757 Westwood Plaza, Suite 1621, Los Angeles, CA 90095-7532, USA
    Search for articles by this author
  • Bryan Yoo
    Affiliations
    Department of Radiological Sciences, David Geffen School of Medicine at University of California Los Angeles, 757 Westwood Plaza, Suite 1621, Los Angeles, CA 90095-7532, USA
    Search for articles by this author
  • Noriko Salamon
    Affiliations
    Department of Radiological Sciences, David Geffen School of Medicine at University of California Los Angeles, 757 Westwood Plaza, Suite 1621, Los Angeles, CA 90095-7532, USA
    Search for articles by this author
  • David S. Liebeskind
    Affiliations
    Department of Neurology, David Geffen School of Medicine at University of California Los Angeles, Neuroscience Research Building, 635 Charles E Young Drive South, Suite 225, Los Angeles, CA 90095-7334, USA
    Search for articles by this author

      Keywords

      To read this article in full you will need to make a payment
      Purchase one-time access
      Subscribers receive full online access to your subscription and archive of back issues up to and including 2002.
      Content published before 2002 is available via pay-per-view purchase only.
      Subscribe to Neuroimaging Clinics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Powers W.J.
        • Rabinstein A.A.
        • Ackerson T.
        • et al.
        Guidelines for the early management of patients with acute ischemic stroke: 2019 update to the 2018 guidelines for the early management of acute ischemic stroke: a guideline for healthcare professionals from the American Heart Association/American Stroke Association.
        Stroke. 2019; 50: e344-e418
        • Schellinger P.D.
        The evolving role of advanced MR imaging as a management tool for adult ischemic stroke: a Western-European perspective.
        Neuroimaging Clin North Am. 2005; 15 (ix): 245-258
        • Rowley H.A.
        Extending the time window for thrombolysis: evidence from acute stroke trials.
        Neuroimaging Clin North Am. 2005; 15 (x): 575-587
        • Hjort N.
        • Christensen S.
        • Solling C.
        • et al.
        Ischemic injury detected by diffusion imaging 11 minutes after stroke.
        Ann Neurol. 2005; 58: 462-465
        • Korutz A.W.
        • Obajuluwa A.
        • Lester M.S.
        • et al.
        Pacemakers in MRI for the Neuroradiologist.
        AJNR Am J Neuroradiol. 2017; 38: 2222-2230
      1. Wald LL, McDaniel PC, Witzel T, et al. Low-cost and portable MRI. J Magn Reson Imaging 2020;52:686–96.

        • Ford A.L.
        • Leker R.R.
        MRI in acute stroke: Good times are coming.
        Neurology. 2015; 84: 2394-2395
        • Griswold M.A.
        • Jakob P.M.
        • Heidemann R.M.
        • et al.
        Generalized autocalibrating partially parallel acquisitions (GRAPPA).
        Magn Reson Med. 2002; 47: 1202-1210
        • Nael K.
        • Khan R.
        • Choudhary G.
        • et al.
        Six-minute magnetic resonance imaging protocol for evaluation of acute ischemic stroke: pushing the boundaries.
        Stroke. 2014; 45: 1985-1991
        • Shah S.
        • Luby M.
        • Poole K.
        • et al.
        Screening with MRI for accurate and rapid stroke treatment: SMART.
        Neurology. 2015; 84: 2438-2444
        • Simonsen C.Z.
        • Yoo A.J.
        • Rasmussen M.
        • et al.
        Magnetic resonance imaging selection for endovascular stroke therapy: workflow in the GOLIATH Trial.
        Stroke. 2018; 49: 1402-1406
        • Chalela J.A.
        • Kidwell C.S.
        • Nentwich L.M.
        • et al.
        Magnetic resonance imaging and computed tomography in emergency assessment of patients with suspected acute stroke: a prospective comparison.
        Lancet. 2007; 369: 293-298
        • Easton J.D.
        • Saver J.L.
        • Albers G.W.
        • et al.
        Definition and evaluation of transient ischemic attack: a scientific statement for healthcare professionals from the American Heart Association/American Stroke Association Stroke Council; Council on Cardiovascular Surgery and Anesthesia; Council on Cardiovascular Radiology and Intervention; Council on Cardiovascular Nursing; and the Interdisciplinary Council on Peripheral Vascular Disease. The American Academy of Neurology affirms the value of this statement as an educational tool for neurologists.
        Stroke. 2009; 40: 2276-2293
        • Wessels T.
        • Wessels C.
        • Ellsiepen A.
        • et al.
        Contribution of diffusion-weighted imaging in determination of stroke etiology.
        AJNR Am J Neuroradiol. 2006; 27: 35-39
        • Verma R.K.
        • Kottke R.
        • Andereggen L.
        • et al.
        Detecting subarachnoid hemorrhage: comparison of combined FLAIR/SWI versus CT.
        Eur J Radiol. 2013; 82: 1539-1545
        • Sanossian N.
        • Saver J.L.
        • Alger J.R.
        • et al.
        Angiography reveals that fluid-attenuated inversion recovery vascular hyperintensities are due to slow flow, not thrombus.
        AJNR Am J Neuroradiol. 2009; 30: 564-568
        • Thomalla G.
        • Rossbach P.
        • Rosenkranz M.
        • et al.
        Negative fluid-attenuated inversion recovery imaging identifies acute ischemic stroke at 3 hours or less.
        Ann Neurol. 2009; 65: 724-732
        • Thomalla G.
        • Cheng B.
        • Ebinger M.
        • et al.
        DWI-FLAIR mismatch for the identification of patients with acute ischaemic stroke within 4.5 h of symptom onset (PRE-FLAIR): a multicentre observational study.
        Lancet Neurol. 2011; 10: 978-986
        • Petkova M.
        • Rodrigo S.
        • Lamy C.
        • et al.
        MR imaging helps predict time from symptom onset in patients with acute stroke: implications for patients with unknown onset time.
        Radiology. 2010; 257: 782-792
        • Thomalla G.
        • Simonsen C.Z.
        • Boutitie F.
        • et al.
        MRI-Guided Thrombolysis for Stroke with Unknown Time of Onset.
        N Engl J Med. 2018; 379: 611-622
        • Meshksar A.
        • Villablanca J.P.
        • Khan R.
        • et al.
        Role of EPI-FLAIR in Patients with Acute Stroke: A Comparative Analysis with FLAIR.
        AJNR Am J Neuroradiol. 2013; 35: 878-883
        • Fiebach J.B.
        • Schellinger P.D.
        • Gass A.
        • et al.
        Stroke magnetic resonance imaging is accurate in hyperacute intracerebral hemorrhage: a multicenter study on the validity of stroke imaging.
        Stroke. 2004; 35: 502-506
        • Flacke S.
        • Urbach H.
        • Keller E.
        • et al.
        Middle cerebral artery (MCA) susceptibility sign at susceptibility-based perfusion MR imaging: clinical importance and comparison with hyperdense MCA sign at CT.
        Radiology. 2000; 215: 476-482
        • Assouline E.
        • Benziane K.
        • Reizine D.
        • et al.
        Intra-arterial thrombus visualized on T2∗ gradient echo imaging in acute ischemic stroke.
        Cerebrovasc Dis. 2005; 20: 6-11
        • Hirai T.
        • Korogi Y.
        • Ono K.
        • et al.
        Prospective evaluation of suspected stenoocclusive disease of the intracranial artery: combined MR angiography and CT angiography compared with digital subtraction angiography.
        AJNR Am J Neuroradiol. 2002; 23: 93-101
        • Bash S.
        • Villablanca J.P.
        • Jahan R.
        • et al.
        Intracranial vascular stenosis and occlusive disease: evaluation with CT angiography, MR angiography, and digital subtraction angiography.
        AJNR Am J Neuroradiol. 2005; 26: 1012-1021
        • Hernandez-Perez M.
        • Puig J.
        • Blasco G.
        • et al.
        Dynamic Magnetic Resonance Angiography Provides Collateral Circulation and Hemodynamic Information in Acute Ischemic Stroke.
        Stroke. 2016; 47: 531-534
        • Ernst M.
        • Forkert N.D.
        • Brehmer L.
        • et al.
        Prediction of infarction and reperfusion in stroke by flow- and volume-weighted collateral signal in MR angiography.
        AJNR Am J Neuroradiol. 2015; 36: 275-282
        • Yang J.J.
        • Hill M.D.
        • Morrish W.F.
        • et al.
        Comparison of pre- and postcontrast 3D time-of-flight MR angiography for the evaluation of distal intracranial branch occlusions in acute ischemic stroke.
        AJNR Am J Neuroradiol. 2002; 23: 557-567
        • Lin W.
        • Tkach J.A.
        • Haacke E.M.
        • et al.
        Intracranial MR angiography: application of magnetization transfer contrast and fat saturation to short gradient-echo, velocity-compensated sequences.
        Radiology. 1993; 186: 753-761
        • Isoda H.
        • Takehara Y.
        • Isogai S.
        • et al.
        MRA of intracranial aneurysm models: a comparison of contrast-enhanced three-dimensional MRA with time-of-flight MRA.
        J Comput Assist Tomogr. 2000; 24: 308-315
        • Boujan T.
        • Neuberger U.
        • Pfaff J.
        • et al.
        Value of Contrast-Enhanced MRA versus Time-of-Flight MRA in Acute Ischemic Stroke MRI.
        AJNR Am J Neuroradiol. 2018; 39: 1710-1716
        • Nael K.
        • Meshksar A.
        • Ellingson B.
        • et al.
        Combined low-dose contrast-enhanced MR angiography and perfusion for acute ischemic stroke at 3T: A more efficient stroke protocol.
        AJNR Am J Neuroradiol. 2014; 35: 1078-1084
        • Read S.J.
        • Hirano T.
        • Abbott D.F.
        • et al.
        The fate of hypoxic tissue on 18F-fluoromisonidazole positron emission tomography after ischemic stroke.
        Ann Neurol. 2000; 48: 228-235
        • Wheeler H.M.
        • Mlynash M.
        • Inoue M.
        • et al.
        Early diffusion-weighted imaging and perfusion-weighted imaging lesion volumes forecast final infarct size in DEFUSE 2.
        Stroke. 2013; 44: 681-685
      2. Grams RW, Kidwell CS, Doshi AH, et al. Tissue-Negative Transient Ischemic Attack: Is There a Role for Perfusion MRI? AJR Am J Roentgenol 2016;207(1):157-62.

        • Restrepo L.
        • Jacobs M.A.
        • Barker P.B.
        • et al.
        Assessment of transient ischemic attack with diffusion- and perfusion-weighted imaging.
        AJNR Am J Neuroradiol. 2004; 25: 1645-1652
        • Krol A.L.
        • Coutts S.B.
        • Simon J.E.
        • et al.
        Perfusion MRI abnormalities in speech or motor transient ischemic attack patients.
        Stroke. 2005; 36: 2487-2489
        • Mlynash M.
        • Olivot J.M.
        • Tong D.C.
        • et al.
        Yield of combined perfusion and diffusion MR imaging in hemispheric TIA.
        Neurology. 2009; 72: 1127-1133
        • Kleinman J.T.
        • Zaharchuk G.
        • Mlynash M.
        • et al.
        Automated perfusion imaging for the evaluation of transient ischemic attack.
        Stroke. 2012; 43: 1556-1560
        • Urrutia V.C.
        • Faigle R.
        • Zeiler S.R.
        • et al.
        Safety of intravenous alteplase within 4.5 hours for patients awakening with stroke symptoms.
        PLoS One. 2018; 13: e0197714
        • Ma H.
        • Campbell B.C.V.
        • Parsons M.W.
        • et al.
        Thrombolysis Guided by Perfusion Imaging up to 9 Hours after Onset of Stroke.
        N Engl J Med. 2019; 380: 1795-1803
        • Berkhemer O.A.
        • Fransen P.S.
        • Beumer D.
        • et al.
        A randomized trial of intraarterial treatment for acute ischemic stroke.
        N Engl J Med. 2015; 372: 11-20
        • Goyal M.
        • Demchuk A.M.
        • Menon B.K.
        • et al.
        Randomized Assessment of Rapid Endovascular Treatment of Ischemic Stroke.
        N Engl J Med. 2015; 372: 1019-1030
        • Jovin T.G.
        • Chamorro A.
        • Cobo E.
        • et al.
        Thrombectomy within 8 hours after symptom onset in ischemic stroke.
        N Engl J Med. 2015; 372: 2296-2306
        • Saver J.L.
        • Goyal M.
        • Bonafe A.
        • et al.
        Stent-retriever thrombectomy after intravenous t-PA vs. t-PA alone in stroke.
        N Engl J Med. 2015; 372: 2285-2295
        • Campbell B.C.
        • Mitchell P.J.
        • Kleinig T.J.
        • et al.
        Endovascular therapy for ischemic stroke with perfusion-imaging selection.
        N Engl J Med. 2015; 372: 1009-1018
        • Bracard S.
        • Ducrocq X.
        • Mas J.L.
        • et al.
        Mechanical thrombectomy after intravenous alteplase versus alteplase alone after stroke (THRACE): a randomised controlled trial.
        Lancet Neurol. 2016; 15: 1138-1147
        • Campbell B.C.V.
        • Majoie C.
        • Albers G.W.
        • et al.
        Penumbral imaging and functional outcome in patients with anterior circulation ischaemic stroke treated with endovascular thrombectomy versus medical therapy: a meta-analysis of individual patient-level data.
        Lancet Neurol. 2019; 18: 46-55
        • Nogueira R.G.
        • Jadhav A.P.
        • Haussen D.C.
        • et al.
        Thrombectomy 6 to 24 Hours after Stroke with a Mismatch between Deficit and Infarct.
        N Engl J Med. 2018; 378: 11-21
        • Albers G.W.
        • Marks M.P.
        • Kemp S.
        • et al.
        Thrombectomy for Stroke at 6 to 16 Hours with Selection by Perfusion Imaging.
        N Engl J Med. 2018; 378: 708-718
        • Schaefer P.W.
        • Hassankhani A.
        • Putman C.
        • et al.
        Characterization and evolution of diffusion MR imaging abnormalities in stroke patients undergoing intra-arterial thrombolysis.
        AJNR Am J Neuroradiol. 2004; 25: 951-957
        • Purushotham A.
        • Campbell B.C.V.
        • Straka M.
        • et al.
        Apparent Diffusion Coefficient Threshold for Delineation of Ischemic Core.
        Int J Stroke. 2013; 10: 348-353
        • Olivot J.M.
        • Mlynash M.
        • Thijs V.N.
        • et al.
        Optimal Tmax threshold for predicting penumbral tissue in acute stroke.
        Stroke. 2009; 40: 469-475
        • Sakai Y.
        • Delman B.N.
        • Fifi J.T.
        • et al.
        Estimation of ischemic core volume using computed tomographic perfusion.
        Stroke. 2018; 49: 2345-2352
        • Nael K.
        • Tadayon E.
        • Wheelwright D.
        • et al.
        Defining ischemic core in acute ischemic stroke using CT perfusion: a multiparametric bayesian-based model.
        AJNR Am J Neuroradiol. 2019; 40: 1491-1497
        • Kudo K.
        • Sasaki M.
        • Yamada K.
        • et al.
        Differences in CT perfusion maps generated by different commercial software: quantitative analysis by using identical source data of acute stroke patients.
        Radiology. 2010; 254: 200-209
        • Souza L.C.
        • Yoo A.J.
        • Chaudhry Z.A.
        • et al.
        Malignant CTA collateral profile is highly specific for large admission DWI infarct core and poor outcome in acute stroke.
        AJNR Am J Neuroradiol. 2012; 33: 1331-1336
        • Tong E.
        • Patrie J.
        • Tong S.
        • et al.
        Time-resolved CT assessment of collaterals as imaging biomarkers to predict clinical outcomes in acute ischemic stroke.
        Neuroradiology. 2017; 59: 1101-1109
        • Menon B.K.
        • Qazi E.
        • Nambiar V.
        • et al.
        Differential effect of baseline computed tomographic angiography collaterals on clinical outcome in patients enrolled in the interventional management of stroke III trial.
        Stroke. 2015; 46: 1239-1244
        • Tan I.Y.
        • Demchuk A.M.
        • Hopyan J.
        • et al.
        CT angiography clot burden score and collateral score: correlation with clinical and radiologic outcomes in acute middle cerebral artery infarct.
        AJNR Am J Neuroradiol. 2009; 30: 525-531
        • Campbell B.C.
        • Christensen S.
        • Tress B.M.
        • et al.
        Failure of collateral blood flow is associated with infarct growth in ischemic stroke.
        J Cereb Blood Flow Metab. 2013; 33: 1168-1172
        • Nael K.
        • Doshi A.
        • De Leacy R.
        • et al.
        MR Perfusion to Determine the Status of Collaterals in Patients with Acute Ischemic Stroke: A Look Beyond Time Maps.
        AJNR Am J Neuroradiol. 2018; 39: 219-225
        • Lansberg M.G.
        • Straka M.
        • Kemp S.
        • et al.
        MRI profile and response to endovascular reperfusion after stroke (DEFUSE 2): a prospective cohort study.
        Lancet Neurol. 2012; 11: 860-867
        • Nicoli F.
        • Lafaye de Micheaux P.
        • Girard N.
        Perfusion-weighted imaging-derived collateral flow index is a predictor of MCA M1 recanalization after i.v. thrombolysis.
        AJNR Am J Neuroradiol. 2013; 34: 107-114
        • Bang O.Y.
        • Saver J.L.
        • Alger J.R.
        • et al.
        Determinants of the distribution and severity of hypoperfusion in patients with ischemic stroke.
        Neurology. 2008; 71: 1804-1811
        • Olivot J.M.
        • Mlynash M.
        • Inoue M.
        • et al.
        Hypoperfusion intensity ratio predicts infarct progression and functional outcome in the DEFUSE 2 Cohort.
        Stroke. 2014; 45: 1018-1023
        • Norris J.W.
        • Hachinski V.C.
        Misdiagnosis of stroke.
        Lancet. 1982; 1: 328-331
        • Merino J.G.
        • Luby M.
        • Benson R.T.
        • et al.
        Predictors of Acute Stroke Mimics in 8187 Patients Referred to a Stroke Service.
        J Stroke Cerebrovasc Dis. 2013; 22: e397-e403
        • Dawson A.
        • Cloud G.C.
        • Pereira A.C.
        • et al.
        Stroke mimic diagnoses presenting to a hyperacute stroke unit.
        Clin Med. 2016; 16: 423-426
        • Goyal M.S.
        • Hoff B.G.
        • Williams J.
        • et al.
        Streamlined hyperacute magnetic resonance imaging protocol identifies tissue-type plasminogen activator–eligible stroke patients when clinical impression is stroke mimic.
        Stroke. 2016; 47: 1012-1017
        • Londono A.
        • Castillo M.
        • Lee Y.Z.
        • et al.
        Apparent diffusion coefficient measurements in the hippocampi in patients with temporal lobe seizures.
        AJNR Am J Neuroradiol. 2003; 24: 1582-1586
        • Szabo K.
        • Poepel A.
        • Pohlmann-Eden B.
        • et al.
        Diffusion-weighted and perfusion MRI demonstrates parenchymal changes in complex partial status epilepticus.
        Brain. 2005; 128: 1369-1376
        • Saver J.L.
        CLINICAL PRACTICE. Cryptogenic Stroke.
        N Engl J Med. 2016; 374: 2065-2074
        • Hart R.G.
        • Diener H.C.
        • Coutts S.B.
        • et al.
        Embolic strokes of undetermined source: the case for a new clinical construct.
        Lancet Neurol. 2014; 13: 429-438
        • Hyafil F.
        • Klein I.
        • Desilles J.P.
        • et al.
        Rupture of nonstenotic carotid plaque as a cause of ischemic stroke evidenced by multimodality imaging.
        Circulation. 2014; 129: 130-131
        • de Havenon A.
        • Yuan C.
        • Tirschwell D.
        • et al.
        Nonstenotic Culprit Plaque: The Utility of High-Resolution Vessel Wall MRI of Intracranial Vessels after Ischemic Stroke.
        Case Rep Radiol. 2015; 2015: 1-4
        • Destrebecq V.
        • Sadeghi N.
        • Lubicz B.
        • et al.
        Intracranial Vessel Wall MRI in Cryptogenic Stroke and Intracranial Vasculitis.
        J Stroke Cerebrovasc Dis. 2020; 29
        • Cheng-Ching E.
        • Jones S.
        • Hui F.K.
        • et al.
        High-resolution MRI vessel wall imaging in varicella zoster virus vasculopathy.
        J Neurol Sci. 2015; 351: 168-173