High-Resolution Magnetic Resonance Vessel Wall Imaging for the Evaluation of Intracranial Vascular Pathology

Published:March 23, 2021DOI:https://doi.org/10.1016/j.nic.2021.01.005

      Keywords

      To read this article in full you will need to make a payment
      Purchase one-time access
      Subscribers receive full online access to your subscription and archive of back issues up to and including 2002.
      Content published before 2002 is available via pay-per-view purchase only.
      Subscribe to Neuroimaging Clinics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Mossa-Basha M.
        • de Havenon A.
        • Becker K.J.
        • et al.
        Added value of vessel wall magnetic resonance imaging in the differentiation of moyamoya vasculopathies in a non-Asian cohort.
        Stroke. 2016; 47: 1782-1788
        • Mossa-Basha M.
        • Hwang W.D.
        • De Havenon A.
        • et al.
        Multicontrast high-resolution vessel wall magnetic resonance imaging and its value in differentiating intracranial vasculopathic processes.
        Stroke. 2015; 46: 1567-1573
        • Mossa-Basha M.
        • Shibata D.K.
        • Hallam D.K.
        • et al.
        Added value of vessel wall magnetic resonance imaging for differentiation of nonocclusive intracranial vasculopathies.
        Stroke. 2017; 48: 3026-3033
        • Yuan C.
        • Parker D.L.
        Three-dimensional carotid plaque MR imaging.
        Neuroimaging Clin N Am. 2016; 26: 1-12
        • Lindenholz A.
        • van der Kolk A.G.
        • Zwanenburg J.J.M.
        • et al.
        The use and pitfalls of intracranial vessel wall imaging: how we do it.
        Radiology. 2018; 286: 12-28
        • Tan H.W.
        • Chen X.
        • Maingard J.
        • et al.
        Intracranial vessel wall imaging with magnetic resonance imaging: current techniques and applications.
        World Neurosurg. 2018; 112: 186-198
        • Zhu X.J.
        • Wang W.
        • Liu Z.J.
        High-resolution magnetic resonance vessel wall imaging for intracranial arterial stenosis.
        Chin Med J. 2016; 129: 1363-1370
        • Alexander M.D.
        • Yuan C.
        • Rutman A.
        • et al.
        High-resolution intracranial vessel wall imaging: imaging beyond the lumen.
        J Neurol Neurosurg Psychiatry. 2016; 87: 589-597
        • Mandell D.M.
        • Mossa-Basha M.
        • Qiao Y.
        • et al.
        Intracranial vessel wall MRI: principles and expert consensus recommendations of the American Society of Neuroradiology.
        AJNR Am J Neuroradiol. 2017; 38: 218-229
        • Qiao Y.
        • Steinman D.A.
        • Qin Q.
        • et al.
        Intracranial arterial wall imaging using three-dimensional high isotropic resolution black blood MRI at 3.0 Tesla.
        J Magn Reson Imaging. 2011; 34: 22-30
        • Balu N.
        • Yarnykh V.L.
        • Chu B.
        • et al.
        Carotid plaque assessment using fast 3D isotropic resolution black-blood MRI.
        Magn Reson Med. 2011; 65: 627-637
        • Yuan J.
        • Usman A.
        • Reid S.A.
        • et al.
        Three-dimensional black-blood T(2) mapping with compressed sensing and data-driven parallel imaging in the carotid artery.
        Magn Reson Imaging. 2017; 37: 62-69
        • Wang J.
        • Yarnykh V.L.
        • Hatsukami T.
        • et al.
        Improved suppression of plaque-mimicking artifacts in black-blood carotid atherosclerosis imaging using a multislice motion-sensitized driven-equilibrium (MSDE) turbo spin-echo (TSE) sequence.
        Magn Reson Med. 2007; 58: 973-981
        • Mossa-Basha M.
        • Alexander M.
        • Gaddikeri S.
        • et al.
        Vessel wall imaging for intracranial vascular disease evaluation.
        J Neurointerv Surg. 2016; 8: 1154-1159
        • Li L.
        • Chai J.T.
        • Biasiolli L.
        • et al.
        Black-blood multicontrast imaging of carotid arteries with DANTE-prepared 2D and 3D MR imaging.
        Radiology. 2014; 273: 560-569
        • Yang H.
        • Zhang X.
        • Qin Q.
        • et al.
        Improved cerebrospinal fluid suppression for intracranial vessel wall MRI.
        J Magn Reson Imaging. 2016; 44: 665-672
        • Turan T.N.
        • Rumboldt Z.
        • Granholm A.C.
        • et al.
        Intracranial atherosclerosis: correlation between in-vivo 3T high resolution MRI and pathology.
        Atherosclerosis. 2014; 237: 460-463
        • Chen X.Y.
        • Wong K.S.
        • Lam W.W.
        • et al.
        Middle cerebral artery atherosclerosis: histological comparison between plaques associated with and not associated with infarct in a postmortem study.
        Cerebrovasc Dis. 2008; 25: 74-80
        • Kim J.S.
        • Nah H.W.
        • Park S.M.
        • et al.
        Risk factors and stroke mechanisms in atherosclerotic stroke: intracranial compared with extracranial and anterior compared with posterior circulation disease.
        Stroke. 2012; 43: 3313-3318
        • López-Cancio E.
        • Galán A.
        • Dorado L.
        • et al.
        Biological signatures of asymptomatic extra- and intracranial atherosclerosis: the Barcelona-AsIA (Asymptomatic Intracranial Atherosclerosis) study.
        Stroke. 2012; 43: 2712-2719
        • Kim Y.S.
        • Hong J.W.
        • Jung W.S.
        • et al.
        Gender differences in risk factors for intracranial cerebral atherosclerosis among asymptomatic subjects.
        Gend Med. 2011; 8: 14-22
        • Sacco R.L.
        • Kargman D.E.
        • Gu Q.
        • et al.
        Race-ethnicity and determinants of intracranial atherosclerotic cerebral infarction. The Northern Manhattan Stroke Study.
        Stroke. 1995; 26: 14-20
        • Arenillas J.F.
        Intracranial atherosclerosis: current concepts.
        Stroke. 2011; 42: S20-S23
        • Ritz K.
        • Denswil N.P.
        • Stam O.C.
        • et al.
        Cause and mechanisms of intracranial atherosclerosis.
        Circulation. 2014; 130: 1407-1414
        • Leung S.Y.
        • Ng T.H.
        • Yuen S.T.
        • et al.
        Pattern of cerebral atherosclerosis in Hong Kong Chinese. Severity in intracranial and extracranial vessels.
        Stroke. 1993; 24: 779-786
        • Nahab F.
        • Cotsonis G.
        • Lynn M.
        • et al.
        Prevalence and prognosis of coexistent asymptomatic intracranial stenosis.
        Stroke. 2008; 39: 1039-1041
        • Lehman V.T.
        • Brinjikji W.
        • Kallmes D.F.
        • et al.
        Clinical interpretation of high-resolution vessel wall MRI of intracranial arterial diseases.
        Br J Radiol. 2016; 89: 20160496
        • Mossa-Basha M.
        • Watase H.
        • Sun J.
        • et al.
        Inter-rater and scan-rescan reproducibility of the detection of intracranial atherosclerosis on contrast-enhanced 3D vessel wall MRI.
        Br J Radiol. 2019; 92: 20180973
        • Mazighi M.
        • Labreuche J.
        • Gongora-Rivera F.
        • et al.
        Autopsy prevalence of proximal extracranial atherosclerosis in patients with fatal stroke.
        Stroke. 2009; 40: 713-718
        • Ryu C.W.
        • Jahng G.H.
        • Kim E.J.
        • et al.
        High resolution wall and lumen MRI of the middle cerebral arteries at 3 tesla.
        Cerebrovasc Dis. 2009; 27: 433-442
        • Zhao D.L.
        • Deng G.
        • Xie B.
        • et al.
        High-resolution MRI of the vessel wall in patients with symptomatic atherosclerotic stenosis of the middle cerebral artery.
        J Clin Neurosci. 2015; 22: 700-704
        • Xu W.H.
        • Li M.L.
        • Niu J.W.
        • et al.
        Intracranial artery atherosclerosis and lumen dilation in cerebral small-vessel diseases: a high-resolution MRI Study.
        CNS Neurosci Ther. 2014; 20: 364-367
        • Gupta A.
        • Baradaran H.
        • Al-Dasuqi K.
        • et al.
        Gadolinium enhancement in intracranial atherosclerotic plaque and ischemic stroke: a systematic review and meta-analysis.
        J Am Heart Assoc. 2016; 5: e003816
        • Qiao Y.
        • Zeiler S.R.
        • Mirbagheri S.
        • et al.
        Intracranial plaque enhancement in patients with cerebrovascular events on high-spatial-resolution MR images.
        Radiology. 2014; 271: 534-542
        • Wu F.
        • Ma Q.
        • Song H.
        • et al.
        Differential features of culprit intracranial atherosclerotic lesions: a whole-brain vessel wall imaging study in patients with acute ischemic stroke.
        J Am Heart Assoc. 2018; 7: e009705
        • Kim J.M.
        • Jung K.H.
        • Sohn C.H.
        • et al.
        Intracranial plaque enhancement from high resolution vessel wall magnetic resonance imaging predicts stroke recurrence.
        Int J Stroke. 2016; 11: 171-179
        • Salvarani C.
        • Brown Jr., R.D.
        • Calamia K.T.
        • et al.
        Primary central nervous system vasculitis: analysis of 101 patients.
        Ann Neurol. 2007; 62: 442-451
        • Provenzale J.M.
        • Allen N.B.
        Neuroradiologic findings in polyarteritis nodosa.
        AJNR Am J Neuroradiol. 1996; 17: 1119-1126
        • Nishino H.
        • Rubino F.A.
        • DeRemee R.A.
        • et al.
        Neurological involvement in Wegener's granulomatosis: an analysis of 324 consecutive patients at the Mayo Clinic.
        Ann Neurol. 1993; 33: 4-9
        • Borhani Haghighi A.
        • Pourmand R.
        • Nikseresht A.R.
        Neuro-Behçet disease. A review.
        Neurologist. 2005; 11: 80-89
        • Pfister H.W.
        • Borasio G.D.
        • Dirnagl U.
        • et al.
        Cerebrovascular complications of bacterial meningitis in adults.
        Neurology. 1992; 42: 1497-1504
        • John S.
        • Hajj-Ali R.A.
        CNS vasculitis.
        Semin Neurol. 2014; 34: 405-412
        • Nagel M.A.
        • Cohrs R.J.
        • Mahalingam R.
        • et al.
        The varicella zoster virus vasculopathies: clinical, CSF, imaging, and virologic features.
        Neurology. 2008; 70: 853-860
        • Calabrese L.H.
        • Mallek J.A.
        Primary angiitis of the central nervous system. Report of 8 new cases, review of the literature, and proposal for diagnostic criteria.
        Medicine. 1988; 67: 20-39
        • Zeiler S.R.
        • Qiao Y.
        • Pardo C.A.
        • et al.
        Vessel wall MRI for targeting biopsies of intracranial vasculitis.
        AJNR Am J Neuroradiol. 2018; 39: 2034-2036
        • Obusez E.C.
        • Hui F.
        • Hajj-Ali R.A.
        • et al.
        High-resolution MRI vessel wall imaging: spatial and temporal patterns of reversible cerebral vasoconstriction syndrome and central nervous system vasculitis.
        AJNR Am J Neuroradiol. 2014; 35: 1527-1532
        • Tsivgoulis G.
        • Lachanis S.
        • Magoufis G.
        • et al.
        High-resolution vessel wall magnetic resonance imaging in varicella-zoster virus vasculitis.
        J Stroke Cerebrovasc Dis. 2016; 25: e74-e76
        • Calabrese L.H.
        • Dodick D.W.
        • Schwedt T.J.
        • et al.
        Narrative review: reversible cerebral vasoconstriction syndromes.
        Ann Intern Med. 2007; 146: 34-44
        • Choi Y.J.
        • Jung S.C.
        • Lee D.H.
        Vessel wall imaging of the intracranial and cervical carotid arteries.
        J Stroke. 2015; 17: 238-255
        • Miller T.R.
        • Shivashankar R.
        • Mossa-Basha M.
        • et al.
        Reversible cerebral vasoconstriction syndrome, part 2: diagnostic work-up, imaging evaluation, and differential diagnosis.
        AJNR Am J Neuroradiol. 2015; 36: 1580-1588
        • Ducros A.
        Reversible cerebral vasoconstriction syndrome.
        Lancet Neurol. 2012; 11: 906-917
        • Mandell D.M.
        • Matouk C.C.
        • Farb R.I.
        • et al.
        Vessel wall MRI to differentiate between reversible cerebral vasoconstriction syndrome and central nervous system vasculitis: preliminary results.
        Stroke. 2012; 43: 860-862
        • Scott R.M.
        • Smith E.R.
        Moyamoya disease and moyamoya syndrome.
        N Engl J Med. 2009; 360: 1226-1237
        • Acker G.
        • Goerdes S.
        • Schneider U.C.
        • et al.
        Distinct clinical and radiographic characteristics of moyamoya disease amongst European Caucasians.
        Eur J Neurol. 2015; 22: 1012-1017
        • Ibrahimi D.M.
        • Tamargo R.J.
        • Ahn E.S.
        Moyamoya disease in children.
        Childs Nerv Syst. 2010; 26: 1297-1308
        • Bersano A.
        • Guey S.
        • Bedini G.
        • et al.
        Research progresses in understanding the pathophysiology of Moyamoya disease.
        Cerebrovasc Dis. 2016; 41: 105-118
        • Kleinloog R.
        • Regli L.
        • Rinkel G.J.
        • et al.
        Regional differences in incidence and patient characteristics of moyamoya disease: a systematic review.
        J Neurol Neurosurg Psychiatry. 2012; 83: 531-536
        • Kuriyama S.
        • Kusaka Y.
        • Fujimura M.
        • et al.
        Prevalence and clinicoepidemiological features of moyamoya disease in Japan: findings from a nationwide epidemiological survey.
        Stroke. 2008; 39: 42-47
        • Suzuki J.
        • Kodama N.
        Moyamoya disease--a review.
        Stroke. 1983; 14: 104-109
        • Muraoka S.
        • Araki Y.
        • Taoka T.
        • et al.
        Prediction of intracranial arterial stenosis progression in patients with moyamoya vasculopathy: contrast-enhanced high-resolution magnetic resonance vessel wall imaging.
        World Neurosurg. 2018; 116: e1114-e1121
        • Wang M.
        • Yang Y.
        • Zhou F.
        • et al.
        The contrast enhancement of intracranial arterial wall on high-resolution MRI and its clinical relevance in patients with moyamoya vasculopathy.
        Sci Rep. 2017; 7: 44264
        • Etminan N.
        • Rinkel G.J.
        Unruptured intracranial aneurysms: development, rupture and preventive management.
        Nat Rev Neurol. 2016; 12: 699-713
        • Weir B.
        Unruptured intracranial aneurysms: a review.
        J Neurosurg. 2002; 96: 3-42
        • Greving J.P.
        • Wermer M.J.
        • Brown Jr., R.D.
        • et al.
        Development of the PHASES score for prediction of risk of rupture of intracranial aneurysms: a pooled analysis of six prospective cohort studies.
        Lancet Neurol. 2014; 13: 59-66
        • Portanova A.
        • Hakakian N.
        • Mikulis D.J.
        • et al.
        Intracranial vasa vasorum: insights and implications for imaging.
        Radiology. 2013; 267: 667-679
        • Schebesch K.M.
        • Doenitz C.
        • Zoephel R.
        • et al.
        Recurrent subarachnoid hemorrhage caused by a de novo basilar tip aneurysm developing within 8 weeks after clipping of a ruptured anterior communicating artery aneurysm: case report.
        Neurosurgery. 2008; 62 ([discussion: E260]): E259-E260
        • Yasuhara T.
        • Tamiya T.
        • Sugiu K.
        • et al.
        De novo formation and rupture of an aneurysm. Case report.
        J Neurosurg. 2002; 97: 697-700
        • Nagahata S.
        • Nagahata M.
        • Obara M.
        • et al.
        Wall enhancement of the intracranial aneurysms revealed by magnetic resonance vessel wall imaging using three-dimensional turbo spin-echo sequence with motion-sensitized driven-equilibrium: a sign of ruptured aneurysm?.
        Clin Neuroradiol. 2016; 26: 277-283
        • Mossa-Basha M.
        • Huynh T.J.
        • Hippe D.S.
        • et al.
        Vessel wall MRI characteristics of endovascularly treated aneurysms: association with angiographic vasospasm.
        J Neurosurg. 2018; 131: 859-867
        • Hartman J.B.
        • Watase H.
        • Sun J.
        • et al.
        Intracranial aneurysms at higher clinical risk for rupture demonstrate increased wall enhancement and thinning on multicontrast 3D vessel wall MRI.
        Br J Radiol. 2019; 92: 20180950
        • Liu P.
        • Qi H.
        • Liu A.
        • et al.
        Relationship between aneurysm wall enhancement and conventional risk factors in patients with unruptured intracranial aneurysms: a black-blood MRI study.
        Interv Neuroradiol. 2016; 22: 501-505
        • Backes D.
        • Hendrikse J.
        • van der Schaaf I.
        • et al.
        Determinants of gadolinium-enhancement of the aneurysm wall in unruptured intracranial aneurysms.
        Neurosurgery. 2018; 83: 719-725
        • Lv N.
        • Karmonik C.
        • Chen S.
        • et al.
        Relationship between aneurysm wall enhancement in vessel wall magnetic resonance imaging and rupture risk of unruptured intracranial aneurysms.
        Neurosurgery. 2019; 84: E385-E391
        • Wang G.X.
        • Li W.
        • Lei S.
        • et al.
        Relationships between aneurysmal wall enhancement and conventional risk factors in patients with intracranial aneurysm: a high-resolution MRI study.
        J Neuroradiol. 2019; 46: 25-28
        • Matsushige T.
        • Shimonaga K.
        • Mizoue T.
        • et al.
        Lessons from vessel wall imaging of intracranial aneurysms: new era of aneurysm evaluation beyond morphology.
        Neurol Med Chir (Tokyo). 2019; 59: 407-414
        • Edjlali M.
        • Guédon A.
        • Ben Hassen W.
        • et al.
        Circumferential thick enhancement at vessel wall MRI has high specificity for intracranial aneurysm instability.
        Radiology. 2018; 289: 181-187
        • Hashimoto Y.
        • Matsushige T.
        • Shimonaga K.
        • et al.
        Vessel wall imaging predicts the presence of atherosclerotic lesions in unruptured intracranial aneurysms.
        World Neurosurgery. 2019; 132: e775-e782
        • Matsushige T.
        • Shimonaga K.
        • Mizoue T.
        • et al.
        Focal aneurysm wall enhancement on magnetic resonance imaging indicates intraluminal thrombus and the rupture point.
        World Neurosurg. 2019; 127: e578-e584
        • Larsen N.
        • Von Der Brelie C.
        • Trick D.
        • et al.
        Vessel wall enhancement in unruptured intracranial aneurysms: an indicator for higher risk of rupture? High-resolution MR imaging and correlated histologic findings.
        AJNR Am J Neuroradiol. 2018; 39: 1617-1621
        • Shimonaga K.
        • Matsushige T.
        • Ishii D.
        • et al.
        Clinicopathological insights from vessel wall imaging of unruptured intracranial aneurysms.
        Stroke. 2018; 49: 2516-2519