Ultrasound of Thyroid Nodules and the Thyroid Imaging Reporting and Data System

      Keywords

      To read this article in full you will need to make a payment
      Purchase one-time access
      Subscribers receive full online access to your subscription and archive of back issues up to and including 2002.
      Content published before 2002 is available via pay-per-view purchase only.
      Subscribe to Neuroimaging Clinics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Ferlay J.
        • Colombet M.
        • Soerjomataram I.
        • et al.
        Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods.
        Int J Cancer. 2019; 144: 1941-1953
      1. Cancer Fast Stats. National Cancer Institute.
        (Available at:) (Accessed October 25, 2020)
        • Chung R.
        • Kim D.
        Imaging of thyroid nodules.
        Appl Radiol. 2019; 48: 16-26
        • Wilhelm S.
        Evaluation of thyroid incidentaloma.
        Surg Clin North Am. 2014; 94: 485-497
        • Haugen B.R.
        • Alexander E.K.
        • Bible K.C.
        • et al.
        2015 American Thyroid Association management guidelines for adult patients with thyroid nodules and differentiated thyroid cancer: the American Thyroid Association Guidelines task force on thyroid nodules and differentiated thyroid cancer.
        Thyroid. 2016; 26: 1-133
        • Grani G.
        • Sponziello M.
        • Pecce V.
        • et al.
        Contemporary thyroid nodule evaluation and management.
        J Clin Endocrinol Metab. 2020; 105: 2869-2883
        • Ahn H.S.
        • Kim H.J.
        • Welch H.G.
        Korea's thyroid-cancer "epidemic"--screening and overdiagnosis.
        N Engl J Med. 2014; 371: 1765-1767
        • Hoang J.K.
        • Langer J.E.
        • Middleton W.D.
        • et al.
        Managing incidental thyroid nodules detected on imaging: white paper of the ACR Incidental Thyroid Findings Committee.
        J Am Coll Radiol. 2015; 12: 143-150
        • Moon J.H.
        • Hyun M.K.
        • Lee J.Y.
        • et al.
        Prevalence of thyroid nodules and their associated clinical parameters: a large-scale, multicenter-based health checkup study.
        Korean J Intern Med. 2018; 33: 753-762
        • Vaccarella S.
        • Franceschi S.
        • Bray F.
        • et al.
        Worldwide Thyroid-Cancer Epidemic? The Increasing Impact of Overdiagnosis.
        N Engl J Med. 2016; 375: 614-617
        • Kitahara C.M.
        • Sosa J.A.
        The changing incidence of thyroid cancer.
        Nat Rev Endocrinol. 2016; 12: 646-653
        • Dal Maso L.
        • Panato C.
        • Franceschi S.
        • et al.
        The impact of overdiagnosis on thyroid cancer epidemic in Italy,1998-2012.
        Eur J Cancer. 2018; 94: 6-15
        • Shi L.L.
        • DeSantis C.
        • Jemal A.
        • et al.
        Changes in thyroid cancer incidence, post-2009 American Thyroid Association guidelines.
        Laryngoscope. 2017; 127: 2437-2441
        • Morris L.G.
        • Tuttle R.M.
        • Davies L.
        Changing Trends in the Incidence of Thyroid Cancer in the United States.
        JAMA Otolaryngol Head Neck Surg. 2016; 142: 709-711
        • Vargas-Uricoechea H.
        • Meza-Cabrera I.
        • Herrera-Chaparro J.
        Concordance between the TIRADS ultrasound criteria and the BETHESDA cytology criteria on the nontoxic thyroid nodule.
        Thyroid Res. 2017; 10: 1
        • Yang J.
        • Schnadig V.
        • Logrono R.
        • et al.
        Fine-needle aspiration of thyroid nodules: a study of 4703 patients with histologic and clinical correlations.
        Cancer. 2007; 111: 306-315
        • Cibas E.S.
        • Ali S.Z.
        NCI Thyroid FNA State of the Science Conference. The Bethesda System For Reporting Thyroid Cytopathology.
        Am J Clin Pathol. 2009; 132: 658-665
        • Ali S.Z.
        • Cibas E.S.
        The Bethesda System for Reporting Thyroid Cytopathology II.
        Acta Cytol. 2016; 60: 397-398
        • Langer J.E.
        • Baloch Z.W.
        • McGrath C.
        • et al.
        Thyroid nodule fine-needle aspiration.
        Semin Ultrasound CT MR. 2012; 33: 158-165
        • Nachiappan A.C.
        • Metwalli Z.A.
        • Hailey B.S.
        • et al.
        The thyroid: review of imaging features and biopsy techniques with radiologic-pathologic correlation.
        Radiographics. 2014; 34 ([published correction appears in Radiographics. 2014 Sep-Oct;34(5):8A]): 276-293
        • Shih M.L.
        • Lee J.A.
        • Hsieh C.B.
        • et al.
        Thyroidectomy for Hashimoto's thyroiditis: complications and associated cancers.
        Thyroid. 2008; 18: 729-734
        • Sacks W.
        • Braunstein G.D.
        Papillary thyroid carcinoma.
        in: Thyroid cancer. endocrine updates. vol. 32. Springer, Boston (MA)2015: 133-153 (Accessed October 27,2020)
        • Hoang J.K.
        • Lee W.K.
        • Lee M.
        • et al.
        US Features of thyroid malignancy: pearls and pitfalls.
        Radiographics. 2007; 27: 847-865
        • Ito Y.
        • Hirokawa M.
        • Higashiyama T.
        • et al.
        Prognosis and prognostic factors of follicular carcinoma in Japan: importance of postoperative pathological examination.
        World J Surg. 2007; 31: 1417-1424
        • Sanders L.E.
        • Silverman M.
        Follicular and Hürthle cell carcinoma: predicting outcome and directing therapy.
        Surgery. 1998; 124: 967-974
        • Sillery J.C.
        • Reading C.C.
        • Charboneau J.W.
        • et al.
        Thyroid follicular carcinoma: sonographic features of 50 cases.
        AJR Am J Roentgenol. 2010; 194: 44-54
        • Cupisti K.
        • Wolf A.
        • Raffel A.
        • et al.
        Long-term clinical and biochemical follow-up in medullary thyroid carcinoma: a single institution's experience over 20 years.
        Ann Surg. 2007; 246: 815-821
        • Lee S.
        • Shin J.H.
        • Han B.K.
        • et al.
        Medullary thyroid carcinoma: comparison with papillary thyroid carcinoma and application of current sonographic criteria.
        AJR Am J Roentgenol. 2010; 194: 1090-1094
        • Ganeshan D.
        • Paulson E.
        • Duran C.
        • et al.
        Current update on medullary thyroid carcinoma.
        AJR Am J Roentgenol. 2013; 201: W867-W876
        • Aldinger K.A.
        • Samaan N.A.
        • Ibanez M.
        • et al.
        Anaplastic carcinoma of the thyroid: a review of 84 cases of spindle and giant cell carcinoma of the thyroid.
        Cancer. 1978; 41: 2267-2275
        • Hahn S.Y.
        • Shin J.H.
        Description and Comparison of the Sonographic Characteristics of Poorly Differentiated Thyroid Carcinoma and Anaplastic Thyroid Carcinoma.
        J Ultrasound Med. 2016; 35: 1873-1879
        • Ishikawa H.
        • Tamaki Y.
        • Takahashi M.
        • et al.
        Comparison of primary thyroid lymphoma with anaplastic thyroid carcinoma on computed tomographic imaging.
        Radiat Med. 2002; 20: 9-15
        • Ahmed S.
        • Ghazarian M.P.
        • Cabanillas M.E.
        • et al.
        Imaging of Anaplastic Thyroid Carcinoma.
        AJNR Am J Neuroradiol. 2018; 39: 547-551
        • Poppe K.
        • Lahoutte T.
        • Everaert H.
        • et al.
        The utility of multimodality imaging in anaplastic thyroid carcinoma.
        Thyroid. 2004; 14: 981-982
        • Takashima S.
        • Morimoto S.
        • Ikezoe J.
        • et al.
        CT evaluation of anaplastic thyroid carcinoma.
        AJR Am J Roentgenol. 1990; 154: 1079-1085
        • Sharma A.
        • Jasim S.
        • Reading C.C.
        • et al.
        Clinical presentation and diagnostic challenges of thyroid lymphoma: a cohort study.
        Thyroid. 2016; 26: 1061-1067
        • Travaglino A.
        • Pace M.
        • Varricchio S.
        • et al.
        Hashimoto thyroiditis in primary thyroid non-Hodgkin lymphoma.
        Am J Clin Pathol. 2020; 153: 156-164
        • Ma B.
        • Jia Y.
        • Wang Q.
        • et al.
        Ultrasound of primary thyroid non-Hodgkin's lymphoma.
        Clin Imaging. 2014; 38: 621-626
        • Xia Y.
        • Wang L.
        • Jiang Y.
        • et al.
        Sonographic appearance of primary thyroid lymphoma-preliminary experience.
        PLoS One. 2014; 9: e114080
        • HooKim K.
        • Gaitor J.
        • Lin O.
        • et al.
        Secondary tumors involving the thyroid gland: A multi-institutional analysis of 28 cases diagnosed on fine-needle aspiration.
        Diagn Cytopathol. 2015; 43: 904-911
        • Pastorello R.G.
        • Saieg M.A.
        Metastases to the thyroid: potential cytologic mimics of primary thyroid neoplasms.
        Arch Pathol Lab Med. 2019; 143: 394-399
        • Hegedüs L.
        Thyroid ultrasound.
        Endocrinol Metab Clin North Am. 2001; 30: 339-ix
        • Tessler F.N.
        • Middleton W.D.
        • Grant E.G.
        Thyroid Imaging Reporting and Data System (TI-RADS): a user's guide.
        Radiology. 2018; 287 ([published correction appears in Radiology. 2018 Jun;287(3):1082]): 29-36
        • Ha E.J.
        • Na D.G.
        • Baek J.H.
        • et al.
        US fine-needle aspiration biopsy for thyroid malignancy: diagnostic performance of seven society guidelines applied to 2000 thyroid nodules.
        Radiology. 2018; 287: 893-900
        • Middleton W.D.
        • Teefey S.A.
        • Reading C.C.
        • et al.
        Comparison of Performance Characteristics of American College of Radiology TI-RADS, Korean Society of Thyroid Radiology TIRADS, and American Thyroid Association Guidelines.
        AJR Am J Roentgenol. 2018; 210: 1148-1154
        • Tessler F.N.
        • Middleton W.D.
        • Grant E.G.
        • et al.
        ACR Thyroid Imaging, Reporting and Data System (TI-RADS): white paper of the ACR TI-RADS committee.
        J Am Coll Radiol. 2017; 14: 587-595
        • Grant E.G.
        • Tessler F.N.
        • Hoang J.K.
        • et al.
        Thyroid ultrasound reporting lexicon: white paper of the ACR Thyroid Imaging, Reporting and Data System (TIRADS) Committee.
        J Am Coll Radiol. 2015; 12: 1272-1279
        • Frates M.C.
        • Benson C.B.
        • Charboneau J.W.
        • et al.
        Management of thyroid nodules detected at US: Society of Radiologists in Ultrasound consensus conference statement.
        Radiology. 2005; 237: 794-800
        • Malhi H.
        • Beland M.D.
        • Cen S.Y.
        • et al.
        Echogenic foci in thyroid nodules: significance of posterior acoustic artifacts.
        AJR Am J Roentgenol. 2014; 203: 1310-1316
        • Moon H.J.
        • Kwak J.Y.
        • Kim M.J.
        • et al.
        Can vascularity at power Doppler US help predict thyroid malignancy?.
        Radiology. 2010; 255: 260-269
        • Rosario P.W.
        • Silva A.L.
        • Borges M.A.
        • et al.
        Is Doppler ultrasound of additional value to gray-scale ultrasound in differentiating malignant and benign thyroid nodules?.
        Arch Endocrinol Metab. 2015; 59: 79-83
        • Frates M.C.
        • Benson C.B.
        • Doubilet P.M.
        • et al.
        Prevalence and distribution of carcinoma in patients with solitary and multiple thyroid nodules on sonography.
        J Clin Endocrinol Metab. 2006; 91: 3411-3417
        • Moon W.J.
        • Jung S.L.
        • Lee J.H.
        • et al.
        Benign and malignant thyroid nodules: US differentiation--multicenter retrospective study.
        Radiology. 2008; 247: 762-770
        • Moon H.J.
        • Kwak J.Y.
        • Kim E.K.
        • et al.
        A taller-than-wide shape in thyroid nodules in transverse and longitudinal ultrasonographic planes and the prediction of malignancy.
        Thyroid. 2011; 21: 1249-1253
        • Kim E.K.
        • Park C.S.
        • Chung W.Y.
        • et al.
        New sonographic criteria for recommending fine-needle aspiration biopsy of nonpalpable solid nodules of the thyroid.
        AJR Am J Roentgenol. 2002; 178: 687-691
        • Kwak J.Y.
        • Han K.H.
        • Yoon J.H.
        • et al.
        Thyroid imaging reporting and data system for US features of nodules: a step in establishing better stratification of cancer risk.
        Radiology. 2011; 260: 892-899
        • Na D.G.
        • Baek J.H.
        • Sung J.Y.
        • et al.
        Thyroid imaging reporting and data system risk stratification of thyroid nodules: categorization based on solidity and echogenicity.
        Thyroid. 2016; 26: 562-572
        • Ahn S.S.
        • Kim E.K.
        • Kang D.R.
        • et al.
        Biopsy of thyroid nodules: comparison of three sets of guidelines.
        AJR Am J Roentgenol. 2010; 194: 31-37
        • Chan B.K.
        • Desser T.S.
        • McDougall I.R.
        • et al.
        Common and uncommon sonographic features of papillary thyroid carcinoma.
        J Ultrasound Med. 2003; 22: 1083-1090
        • Shin J.H.
        • Ha T.K.
        • Park H.K.
        • et al.
        Implication of minimal extrathyroidal extension as a prognostic factor in papillary thyroid carcinoma.
        Int J Surg. 2013; 11: 944-947
        • Su H.K.
        • Wenig B.M.
        • Haser G.C.
        • et al.
        Inter-observer variation in the pathologic identification of minimal extrathyroidal extension in papillary thyroid carcinoma.
        Thyroid. 2016; 26: 512-517
        • Kwak J.Y.
        • Kim E.K.
        • Youk J.H.
        • et al.
        Extrathyroid extension of well-differentiated papillary thyroid microcarcinoma on US.
        Thyroid. 2008; 18: 609-614
        • Kamaya A.
        • Tahvildari A.M.
        • Patel B.N.
        • et al.
        Sonographic detection of extracapsular extension in papillary thyroid cancer.
        J Ultrasound Med. 2015; 34: 2225-2230
        • Lacout A.
        • Chevenet C.
        • Thariat J.
        • et al.
        Thyroid calcifications: a pictorial essay.
        J Clin Ultrasound. 2016; 44: 245-251
        • Arpaci D.
        • Ozdemir D.
        • Cuhaci N.
        • et al.
        Evaluation of cytopathological findings in thyroid nodules with macrocalcification: macrocalcification is not innocent as it seems.
        Arq Bras Endocrinol Metabol. 2014; 58: 939-945
        • Jinih M.
        • Faisal F.
        • Abdalla K.
        • et al.
        Association between thyroid nodule size and malignancy rate.
        Ann R Coll Surg Engl. 2020; 102: 43-48
        • Hong M.J.
        • Na D.G.
        • Baek J.H.
        • et al.
        Impact of Nodule Size on Malignancy Risk Differs according to the Ultrasonography Pattern of Thyroid Nodules.
        Korean J Radiol. 2018; 19: 534-541
        • Ito Y.
        • Miyauchi A.
        • Inoue H.
        • et al.
        An observational trial for papillary thyroid microcarcinoma in Japanese patients.
        World J Surg. 2010; 34: 28-35
        • Davies L.
        • Roman B.R.
        • Fukushima M.
        • et al.
        Patient Experience of Thyroid Cancer Active Surveillance in Japan.
        JAMA Otolaryngol Head Neck Surg. 2019; 145: 363-370
        • Ajmal S.
        • Rapoport S.
        • Ramirez Batlle H.
        • et al.
        The natural history of the benign thyroid nodule: what is the appropriate follow-up strategy?.
        J Am Coll Surg. 2015; 220: 987-992
        • Nakamura H.
        • Hirokawa M.
        • Ota H.
        • et al.
        Is an Increase in Thyroid Nodule Volume a Risk Factor for Malignancy?.
        Thyroid. 2015; 25: 804-811
        • Durante C.
        • Costante G.
        • Lucisano G.
        • et al.
        The natural history of benign thyroid nodules.
        JAMA. 2015; 313: 926-935
        • Hoang J.K.
        • Middleton W.D.
        • Farjat A.E.
        • et al.
        Interobserver Variability of Sonographic Features Used in the American College of Radiology Thyroid Imaging Reporting and Data System.
        AJR Am J Roentgenol. 2018; 211: 162-167
        • Grani G.
        • Lamartina L.
        • Ascoli V.
        • et al.
        Reducing the number of unnecessary thyroid biopsies while improving diagnostic accuracy: toward the "right" TIRADS.
        J Clin Endocrinol Metab. 2019; 104: 95-102
        • Wu X.L.
        • Du J.R.
        • Wang H.
        • et al.
        Comparison and preliminary discussion of the reasons for the differences in diagnostic performance and unnecessary FNA biopsies between the ACR TIRADS and 2015 ATA guidelines.
        Endocrine. 2019; 65: 121-131
        • Buda M.
        • Wildman-Tobriner B.
        • Hoang J.K.
        • et al.
        Management of thyroid nodules seen on US images: deep learning may match performance of radiologists.
        Radiology. 2019; 292: 695-701
        • Wildman-Tobriner B.
        • Buda M.
        • Hoang J.K.
        • et al.
        Using artificial intelligence to revise ACR TI-RADS risk stratification of thyroid nodules: diagnostic accuracy and utility.
        Radiology. 2019; 292: 112-119