Advertisement
Review Article| Volume 33, ISSUE 2, P299-313, May 2023

Download started.

Ok

The Current State of Functional MR Imaging for Trauma Prognostication

Published:February 25, 2023DOI:https://doi.org/10.1016/j.nic.2023.01.005

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribers receive full online access to your subscription and archive of back issues up to and including 2002.

      Content published before 2002 is available via pay-per-view purchase only.

      Subscribe:

      Subscribe to Neuroimaging Clinics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Cristofori I.
        • Levin H.S.
        Traumatic brain injury and cognition.
        in: Grafman J. Salazar A.M. Handbook of clinical neurology. Elsevier, Waltham, MAVol. 128, 2015: 579-611
        • Edlow B.L.
        • Giacino J.T.
        • Wu O.
        Functional MRI and Outcome in Traumatic Coma.
        Curr Neurol Neurosci Rep. 2013; 13: 375
        • Dewan M.C.
        • Rattani A.
        • Gupta S.
        • et al.
        Estimating the global incidence of traumatic brain injury.
        J Neurosurg. 2019; 130: 1080-1097
        • Archer K.R.
        • Coronado R.A.
        • Haislip L.R.
        • et al.
        Telephone-based goal management training for adults with mild traumatic brain injury: Study protocol for a randomized controlled trial.
        Trials. 2015; 16: 244
        • Maroon J.C.
        • LePere D.B.
        • Blaylock R.L.
        • et al.
        Postconcussion Syndrome: A Review of Pathophysiology and Potential Nonpharmacological Approaches to Treatment.
        Physician and Sportsmedicine. 2012; 40: 73-87
        • McCrory P.
        • Meeuwisse W.
        • Dvorak J.
        • et al.
        Consensus statement on concussion in sport—The 5 th international conference on concussion in sport held in Berlin, October 2016.
        Br J Sports Med. 2017; 51: 838-847
        • Halstead M.E.
        • Walter K.D.
        • Moffatt K.
        Sport-Related Concussion in Children and Adolescents.
        Pediatrics. 2018; 142: e20183074
        • Giza C.
        • Greco T.
        • Prins M.L.
        Concussion: pathophysiology and clinical translation.
        in: Hainline B. Stern R.A. Handbook of clinical neurology. Elsevier, Cambridge, MAVol. 158, 2018: 51-61
        • Mishra R.
        • Ucros H.E.V.
        • Florez-Perdomo W.A.
        • et al.
        Predictive Value of Rotterdam Score and Marshall Score in Traumatic Brain Injury: A Contemporary Review.
        Indian J Neurotrauma. 2021; 0041: 1727404
        • Raj R.
        • Skrifvars M.
        • Bendel S.
        • et al.
        Predicting six-month mortality of patients with traumatic brain injury: Usefulness of common intensive care severity scores.
        Crit Care. 2014; 18: R60
        • Palacios E.M.
        • Owen J.P.
        • Yuh E.L.
        • et al.
        The evolution of white matter microstructural changes after mild traumatic brain injury: A longitudinal DTI and NODDI study.
        Sci Adv. 2020; 6: eaaz6892
        • Ianof J.N.
        • Anghinah R.
        Traumatic brain injury: An EEG point of view.
        Demen Neuropsychologia. 2017; 11: 3-5
        • Hillman E.M.C.
        Coupling Mechanism and Significance of the BOLD Signal: A Status Report.
        Annu Rev Neurosci. 2014; 37: 161-181
        • Raichle M.E.
        Behind the scenes of functional brain imaging: A historical and physiological perspective.
        Proc Natl Acad Sci. 1998; 95: 765-772
        • Hirano Y.
        • Stefanovic B.
        • Silva A.C.
        Spatiotemporal Evolution of the Functional Magnetic Resonance Imaging Response to Ultrashort Stimuli.
        J Neurosci. 2011; 31: 1440-1447
        • Biswal B.
        • Zerrin Yetkin F.
        • Haughton V.M.
        • et al.
        Functional connectivity in the motor cortex of resting human brain using echo-planar mri.
        Magn Reson Med. 1995; 34: 537-541
        • Zhang S.
        • Li X.
        • Lv J.
        • et al.
        Characterizing and differentiating task-based and resting state fMRI signals via two-stage sparse representations.
        Brain Imaging Behav. 2016; 10: 21-32
        • Fox M.D.
        • Grecius M.
        Clinical applications of resting state functional connectivity.
        Front Syst Neurosci. 2010; 4: 1-13
        • Adriaanse S.M.
        • Binnewijzend M.A.A.
        • Ossenkoppele R.
        • et al.
        Widespread Disruption of Functional Brain Organization in Early-Onset Alzheimer’s Disease.
        PLoS ONE. 2014; 9: e102995
        • Mohan A.
        • Roberto A.J.
        • Mohan A.
        • et al.
        The Significance of the Default Mode Network (DMN) in Neurological and Neuropsychiatric Disorders: A Review.
        Yale J Biol Med. 2016; 89: 49-57
        • Glover G.H.
        Overview of Functional Magnetic Resonance Imaging.
        Neurosurg Clin N Am. 2011; 22: 133-139
        • Esteban O.
        • Ciric R.
        • Finc K.
        • et al.
        Analysis of task-based functional MRI data preprocessed with fMRIPrep.
        Nat Protoc. 2020; 15: 2186-2202
        • Bennett C.M.
        • Miller M.B.
        fMRI reliability: Influences of task and experimental design.
        Cogn Affective, Behav Neurosci. 2013; 13: 690-702
        • Park H.J.
        • Friston K.J.
        • Pae C.
        • et al.
        Dynamic effective connectivity in resting state fMRI.
        NeuroImage. 2018; 180: 594-608
        • Calhoun V.D.
        • Adali T.
        Unmixing fMRI with independent component analysis.
        IEEE Eng Med Biol Mag. 2006; 25: 79-90
        • Lee M.H.
        • Smyser C.D.
        • Shimony J.S.
        Resting-State fMRI: A Review of Methods and Clinical Applications.
        Am J Neuroradiology. 2013; 34: 1866-1872
        • Edlow B.L.
        • Rosenthal E.S.
        Diagnostic, Prognostic, and Advanced Imaging in Severe Traumatic Brain Injury.
        Curr Trauma Rep. 2015; 1: 133-146
        • Harnett N.G.
        • van Rooij S.J.H.
        • Ely T.D.
        • et al.
        Prognostic neuroimaging biomarkers of trauma-related psychopathology: Resting-state fMRI shortly after trauma predicts future PTSD and depression symptoms in the AURORA study.
        Neuropsychopharmacology. 2021; 46: 1263-1271
        • Manning K.Y.
        • Schranz A.
        • Bartha R.
        • et al.
        Multiparametric MRI changes persist beyond recovery in concussed adolescent hockey players.
        Neurology. 2017; 89: 2157-2166
        • Chong C.D.
        • Wang L.
        • Wang K.
        • et al.
        Homotopic region connectivity during concussion recovery: A longitudinal fMRI study.
        PLoS ONE. 2019; 14: e0221892
        • Moreira da Silva N.
        • Cowie C.J.A.
        • Blamire A.M.
        • et al.
        Investigating Brain Network Changes and Their Association With Cognitive Recovery After Traumatic Brain Injury: A Longitudinal Analysis.
        Front Neurol. 2020; 11: 369
        • Meier T.B.
        • Bellgowan P.S.
        • Mayer A.R.
        Longitudinal assessment of local and global functional connectivity following sports-related concussion.
        Brain Imaging Behav. 2017; 11: 129-140
        • Sours C.
        • Zhuo J.
        • Roys S.
        • et al.
        Disruptions in Resting State Functional Connectivity and Cerebral Blood Flow in Mild Traumatic Brain Injury Patients.
        PLoS ONE. 2015; 10: e0134019
        • Churchill N.W.
        • Hutchison M.G.
        • Graham S.J.
        • et al.
        Scale-free functional brain dynamics during recovery from sport-related concussion.
        Hum Brain Mapp. 2020; 41: 2567-2582
        • Churchill N.W.
        • Hutchison M.G.
        • Graham S.J.
        • et al.
        Concussion Risk and Resilience: Relationships with Pre-Injury Salience Network Connectivity.
        J Neurotrauma. 2021; 38: 3097-3106
        • Madhavan R.
        • Joel S.E.
        • Mullick R.
        • et al.
        Longitudinal Resting State Functional Connectivity Predicts Clinical Outcome in Mild Traumatic Brain Injury.
        J Neurotrauma. 2019; 36: 650-660
        • Dall’Acqua P.
        • Johannes S.
        • Mica L.
        • et al.
        Functional and Structural Network Recovery after Mild Traumatic Brain Injury: A 1-Year Longitudinal Study.
        Front Hum Neurosci. 2017; 11: 280
        • Abbas K.
        • Shenk T.E.
        • Poole V.N.
        • et al.
        Effects of Repetitive Sub-Concussive Brain Injury on the Functional Connectivity of Default Mode Network in High School Football Athletes.
        Developmental Neuropsychol. 2015; 40: 51-56
        • Sours C.
        • Chen H.
        • Roys S.
        • et al.
        Investigation of Multiple Frequency Ranges Using Discrete Wavelet Decomposition of Resting-State Functional Connectivity in Mild Traumatic Brain Injury Patients.
        Brain Connectivity. 2015; 5: 442-450
        • Stephens J.A.
        • Salorio C.F.
        • Barber A.D.
        • et al.
        Preliminary findings of altered functional connectivity of the default mode network linked to functional outcomes one year after pediatric traumatic brain injury.
        Developmental Neurorehabil. 2018; 21: 423-430
        • Johnson B.
        • Neuberger T.
        • Gay M.
        • et al.
        Effects of Subconcussive Head Trauma on the Default Mode Network of the Brain.
        J Neurotrauma. 2014; 31: 1907-1913
        • Zhu D.C.
        • Covassin T.
        • Nogle S.
        • et al.
        A Potential Biomarker in Sports-Related Concussion: Brain Functional Connectivity Alteration of the Default-Mode Network Measured with Longitudinal Resting-State fMRI over Thirty Days.
        J Neurotrauma. 2015; 32: 327-341
        • Kuceyeski A.F.
        • Jamison K.W.
        • Owen J.P.
        • et al.
        Longitudinal increases in structural connectome segregation and functional connectome integration are associated with better recovery after mild TBI.
        Hum Brain Mapp. 2019; 40: 4441-4456
        • Roy A.
        • Bernier R.A.
        • Wang J.
        • et al.
        The evolution of cost-efficiency in neural networks during recovery from traumatic brain injury.
        PLoS ONE. 2017; 12: e0170541
        • Threlkeld Z.D.
        • Bodien Y.G.
        • Rosenthal E.S.
        • et al.
        Functional networks reemerge during recovery of consciousness after acute severe traumatic brain injury.
        Cortex. 2018; 106: 299-308
        • Hillary F.G.
        • Rajtmajer S.M.
        • Roman C.A.
        • et al.
        The Rich Get Richer: Brain Injury Elicits Hyperconnectivity in Core Subnetworks.
        PLoS ONE. 2014; 9: e104021
        • van der Horn H.J.
        • Scheenen M.E.
        • de Koning M.E.
        • et al.
        The Default Mode Network as a Biomarker of Persistent Complaints after Mild Traumatic Brain Injury: A Longitudinal Functional Magnetic Resonance Imaging Study.
        J Neurotrauma. 2017; 34: 3262-3269
        • Nakamura T.
        • Hillary F.G.
        • Biswal B.B.
        Resting Network Plasticity Following Brain Injury.
        PLoS ONE. 2009; 4: e8220
        • Cazalis F.
        • Babikian T.
        • Giza C.
        • et al.
        Pivotal role of anterior cingulate cortex in working memory after traumatic brain injury in youth.
        Front Neurol. 2011; 1: 1-9
        • Sanchez-Carrion R.
        • Fernandez-Espejo D.
        • Junque C.
        • et al.
        A longitudinal fMRI study of working memory in severe TBI patients with diffuse axonal injury.
        NeuroImage. 2008; 43: 421-429
        • Chen C.J.
        • Wu C.H.
        • Liao Y.P.
        • et al.
        Working Memory in Patients with Mild Traumatic Brain Injury: Functional MR Imaging Analysis.
        Radiology. 2012; 264: 844-851
        • Dettwiler A.
        • Murugavel M.
        • Putukian M.
        • et al.
        Persistent Differences in Patterns of Brain Activation after Sports-Related Concussion: A Longitudinal Functional Magnetic Resonance Imaging Study.
        J Neurotrauma. 2014; 31: 180-188
        • Wylie G.R.
        • Freeman K.
        • Thomas A.
        • et al.
        Cognitive improvement after mild traumatic brain injury measured with functional neuroimaging during the acute period.
        PLoS One. 2015; 10: e0126110
        • Lovell M.R.
        • Pardini J.E.
        • Welling J.
        • et al.
        Functional brain abnormalities are related to clinical recovery and time to return-to-play in athletes.
        Neurosurgery. 2007; 61: 352-360
        • Hsu H.L.
        • Chen D.Y.T.
        • Tseng Y.C.
        • et al.
        Sex Differences in Working Memory after Mild Traumatic Brain Injury: A Functional MR Imaging Study.
        Radiology. 2015; 276: 828-835
        • Coffey B.J.
        • Threlkeld Z.D.
        • Foulkes A.S.
        • et al.
        Reemergence of the language network during recovery from severe traumatic brain injury: A pilot functional MRI study.
        Brain Inj. 2021; 35: 1552-1562
        • Kim Y.H.
        • Yoo W.K.
        • Ko M.H.
        • et al.
        Plasticity of the Attentional Network After Brain Injury and Cognitive Rehabilitation.
        Neurorehabil Neural Repair. 2009; 23: 468-477
        • Wu S.C.J.
        • Jenkins L.M.
        • Apple A.C.
        • et al.
        Longitudinal fMRI task reveals neural plasticity in default mode network with disrupted executive-default coupling and selective attention after traumatic brain injury.
        Brain Imaging Behav. 2020; 14: 1638-1650
        • Chen D.Y.T.
        • Hsu H.L.
        • Ying-Sheng Kuo Y.S.
        • et al.
        Effect of Age on Working Memory Performance and Cerebral Activation after Mild Traumatic Brain Injury: A Functional MR Imaging Study.
        Radiology. 2015; 278: 854-862
        • Churchill N.W.
        • Hutchison M.G.
        • Richards D.
        • et al.
        The first week after concussion: Blood flow, brain function and white matter microstructure.
        NeuroImage. 2017; 14: 480-489
        • Monti J.M.
        • Voss M.W.
        • Pence A.
        • et al.
        History of mild traumatic brain injury is associated with deficits in relational memory, reduced hippocampal volume, and less neural activity later in life.
        Front Aging Neurosci. 2013; 5: 1-9
        • Feis R.A.
        • Bouts M.J.R.J.
        • Dopper E.G.P.
        • et al.
        Multimodal MRI of grey matter, white matter, and functional connectivity in cognitively healthy mutation carriers at risk for frontotemporal dementia and Alzheimer’s disease.
        BMC Neurol. 2019; 19: 343
        • Stevens J.S.
        • Harnett N.G.
        • Lebois L.A.M.
        • et al.
        Brain-Based Biotypes of Psychiatric Vulnerability in the Acute Aftermath of Trauma.
        Am J Psychiatry. 2021; 178: 1037-1049