Advertisement
Review Article| Volume 33, ISSUE 2, P343-356, May 2023

Download started.

Ok

The Current State of Susceptibility-Weighted Imaging and Quantitative Susceptibility Mapping in Head Trauma

Published:February 26, 2023DOI:https://doi.org/10.1016/j.nic.2023.01.009

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribers receive full online access to your subscription and archive of back issues up to and including 2002.

      Content published before 2002 is available via pay-per-view purchase only.

      Subscribe:

      Subscribe to Neuroimaging Clinics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Kirov II,
        • Whitlow C.T.
        • Zamora C.
        Susceptibility-Weighted Imaging and Magnetic Resonance Spectroscopy in Concussion.
        Neuroimaging Clin N Am. 2018; 28: 91-105
        • Kornguth S.
        • Rutledge N.
        • Perlaza G.
        • et al.
        A Proposed Mechanism for Development of CTE Following Concussive Events: Head Impact, Water Hammer Injury, Neurofilament Release, and Autoimmune Processes.
        Brain Sci. 2017; 7: 164
        • Portanova A.
        • Hakakian N.
        • Mikulis D.J.
        • et al.
        Intracranial vasa vasorum: insights and implications for imaging.
        Radiology. 2013; 267: 667-679
        • Edwards 3rd, G.
        • Zhao J.
        • Dash P.K.
        • et al.
        Traumatic Brain Injury Induces Tau Aggregation and Spreading.
        J Neurotrauma. 2020; 37: 80-92
        • Edwards 3rd, G.
        • Moreno-Gonzalez I.
        • Soto C.
        Amyloid-beta and tau pathology following repetitive mild traumatic brain injury.
        Biochem Biophys Res Commun. 2017; 483: 1137-1142
        • Haacke E.M.
        • Liu S.
        • Buch S.
        • et al.
        Quantitative susceptibility mapping: current status and future directions.
        Magn Reson Imaging. 2015; 33: 1-25
        • Haller S.
        • Haacke E.M.
        • Thurnher M.M.
        • et al.
        Susceptibility-weighted Imaging: Technical Essentials and Clinical Neurologic Applications.
        Radiology. 2021; 299: 3-26
        • Liu S.
        • Buch S.
        • Chen Y.
        • et al.
        Susceptibility-weighted imaging: current status and future directions.
        NMR Biomed. 2017; 30: 10
        • Weng C.L.
        • Jeng Y.
        • Li Y.T.
        • et al.
        Black Dipole or White Dipole: Using Susceptibility Phase Imaging to Differentiate Cerebral Microbleeds from Intracranial Calcifications.
        AJNR Am J Neuroradiol. 2020; 41: 1405-1413
        • Salmela M.B.
        • Krishna S.H.
        • Martin D.J.
        • et al.
        All that bleeds is not black: susceptibility weighted imaging of intracranial hemorrhage and the effect of T1 signal.
        Clin Imaging. 2017; 41: 69-72
        • Hsu C.C.
        • Haacke E.M.
        • Heyn C.C.
        • et al.
        The T1 shine through effect on susceptibility weighted imaging: an under recognized phenomenon.
        Neuroradiology. 2018; 60: 235-237
        • Conklin J.
        • Longo M.G.F.
        • Cauley S.F.
        • et al.
        Validation of Highly Accelerated Wave-CAIPI SWI Compared with Conventional SWI and T2∗-Weighted Gradient Recalled-Echo for Routine Clinical Brain MRI at 3T.
        AJNR Am J Neuroradiol. 2019; 40: 2073-2080
        • Greenberg S.M.
        • Vernooij M.W.
        • Cordonnier C.
        • et al.
        Cerebral microbleeds: a guide to detection and interpretation.
        Lancet Neurol. 2009; 8: 165-174
        • Vernooij M.W.
        • Ikram M.A.
        • Wielopolski P.A.
        • et al.
        Cerebral microbleeds: accelerated 3D T2∗-weighted GRE MR imaging versus conventional 2D T2∗-weighted GRE MR imaging for detection.
        Radiology. 2008; 248: 272-277
        • Beauchamp M.H.
        • Ditchfield M.
        • Babl F.E.
        • et al.
        Detecting traumatic brain lesions in children: CT versus MRI versus susceptibility weighted imaging (SWI).
        J Neurotrauma. 2011; 28: 915-927
        • Liu G.
        • Ghimire P.
        • Pang H.
        • et al.
        Improved sensitivity of 3.0 Tesla susceptibility-weighted imaging in detecting traumatic bleeds and its use in predicting outcomes in patients with mild traumatic brain injury.
        Acta Radiol. 2015; 56: 1256-1263
        • Ashwal S.
        • Babikian T.
        • Gardner-Nichols J.
        • et al.
        Susceptibility-weighted imaging and proton magnetic resonance spectroscopy in assessment of outcome after pediatric traumatic brain injury.
        Arch Phys Med Rehabil. 2006; 87: S50-S58
        • Huang Y.L.
        • Kuo Y.S.
        • Tseng Y.C.
        • et al.
        Susceptibility-weighted MRI in mild traumatic brain injury.
        Neurology. 2015; 84: 580-585
        • Griffin A.D.
        • Turtzo L.C.
        • Parikh G.Y.
        • et al.
        Traumatic microbleeds suggest vascular injury and predict disability in traumatic brain injury.
        Brain. 2019; 142: 3550-3564
        • Tao J.J.
        • Zhang W.J.
        • Wang D.
        • et al.
        Susceptibility weighted imaging in the evaluation of hemorrhagic diffuse axonal injury.
        Neural Regen Res. 2015; 10: 1879-1881
        • Beauchamp M.H.
        • Beare R.
        • Ditchfield M.
        • et al.
        Susceptibility weighted imaging and its relationship to outcome after pediatric traumatic brain injury.
        Cortex. 2013; 49: 591-598
        • Tong K.A.
        • Ashwal S.
        • Holshouser B.A.
        • et al.
        Diffuse axonal injury in children: clinical correlation with hemorrhagic lesions.
        Ann Neurol. 2004; 56: 36-50
        • Lotan E.
        • Morley C.
        • Newman J.
        • et al.
        Prevalence of Cerebral Microhemorrhage following Chronic Blast-Related Mild Traumatic Brain Injury in Military Service Members Using Susceptibility-Weighted MRI.
        AJNR Am J Neuroradiol. 2018; 39: 1222-1225
        • Trifan G.
        • Gattu R.
        • Haacke E.M.
        • et al.
        MR imaging findings in mild traumatic brain injury with persistent neurological impairment.
        Magn Reson Imaging. 2017; 37: 243-251
        • Park J.H.
        • Park S.W.
        • Kang S.H.
        • et al.
        Detection of traumatic cerebral microbleeds by susceptibility-weighted image of MRI.
        J Korean Neurosurg Soc. 2009; 46: 365-369
        • Wang X.
        • Wei X.E.
        • Li M.H.
        • et al.
        Microbleeds on susceptibility-weighted MRI in depressive and non-depressive patients after mild traumatic brain injury.
        Neurol Sci. 2014; 35: 1533-1539
        • Panwar J.
        • Hsu C.C.
        • Tator C.H.
        • et al.
        Magnetic Resonance Imaging Criteria for Post-Concussion Syndrome: A Study of 127 Post-Concussion Syndrome Patients.
        J Neurotrauma. 2020; 37: 1190-1196
        • Jarrett M.
        • Tam R.
        • Hernandez-Torres E.
        • et al.
        A Prospective Pilot Investigation of Brain Volume, White Matter Hyperintensities, and Hemorrhagic Lesions after Mild Traumatic Brain Injury.
        Front Neurol. 2016; 7: 11
        • Maugans T.A.
        • Farley C.
        • Altaye M.
        • et al.
        Pediatric sports-related concussion produces cerebral blood flow alterations.
        Pediatrics. 2012; 129: 28-37
        • Ellis M.J.
        • Leiter J.
        • Hall T.
        • et al.
        Neuroimaging findings in pediatric sports-related concussion.
        J Neurosurg Pediatr. 2015; 16: 241-247
        • Lee Y.J.
        • Lee S.
        • Jang J.
        • et al.
        Findings Regarding an Intracranial Hemorrhage on the Phase Image of a Susceptibility-Weighted Image (SWI), According to the Stage, Location, and Size.
        Investigative Magnetic Resonance Imaging. 2015; 12: 107-113
        • Verma R.K.
        • Kottke R.
        • Andereggen L.
        • et al.
        Detecting subarachnoid hemorrhage: comparison of combined FLAIR/SWI versus CT.
        Eur J Radiol. 2013; 82: 1539-1545
        • Wu Z.
        • Li S.
        • Lei J.
        • et al.
        Evaluation of traumatic subarachnoid hemorrhage using susceptibility-weighted imaging.
        AJNR Am J Neuroradiol. 2010; 31: 1302-1310
        • Gharabaghi S.
        • Liu S.
        • Wang Y.
        • et al.
        Multi-Echo Quantitative Susceptibility Mapping for Strategically Acquired Gradient Echo (STAGE) Imaging.
        Front Neurosci. 2020; 14: 581474
        • Ruetten P.P.R.
        • Gillard J.H.
        • Graves M.J.
        Introduction to Quantitative Susceptibility Mapping and Susceptibility Weighted Imaging.
        Br J Radiol. 2019; 92: 20181016
        • Wang Y.
        • Liu T.
        Quantitative susceptibility mapping (QSM): Decoding MRI data for a tissue magnetic biomarker.
        Magn Reson Med. 2015; 73: 82-101
        • Liu W.
        • Soderlund K.
        • Senseney J.S.
        • et al.
        Imaging Cerebral Microhemorrhages in Military Service Members with Chronic Traumatic Brain Injury.
        Radiology. 2016; 278: 536-545
        • Liu W.
        • Yeh P.H.
        • Nathan D.E.
        • et al.
        Assessment of Brain Venous Structure in Military Traumatic Brain Injury Patients using Susceptibility Weighted Imaging and Quantitative Susceptibility Mapping.
        J Neurotrauma. 2019; 36: 2213-2221
        • Liu S.
        • Utriainen D.
        • Chai C.
        • et al.
        Cerebral microbleed detection using Susceptibility Weighted Imaging and deep learning.
        Neuroimage. 2019; 198: 271-282